ffmpeg / libavutil / pca.c @ f43ad0fe
History | View | Annotate | Download (6.13 KB)
1 |
/*
|
---|---|
2 |
* Principal component analysis
|
3 |
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
4 |
*
|
5 |
* This library is free software; you can redistribute it and/or
|
6 |
* modify it under the terms of the GNU Lesser General Public
|
7 |
* License as published by the Free Software Foundation; either
|
8 |
* version 2 of the License, or (at your option) any later version.
|
9 |
*
|
10 |
* This library is distributed in the hope that it will be useful,
|
11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13 |
* Lesser General Public License for more details.
|
14 |
*
|
15 |
* You should have received a copy of the GNU Lesser General Public
|
16 |
* License along with this library; if not, write to the Free Software
|
17 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18 |
*
|
19 |
*/
|
20 |
|
21 |
/**
|
22 |
* @file pca.c
|
23 |
* Principal component analysis
|
24 |
*/
|
25 |
|
26 |
#include "common.h" |
27 |
#include "pca.h" |
28 |
|
29 |
PCA *ff_pca_init(int n){
|
30 |
PCA *pca; |
31 |
if(n<=0) |
32 |
return NULL; |
33 |
|
34 |
pca= av_mallocz(sizeof(PCA));
|
35 |
pca->n= n; |
36 |
pca->count=0;
|
37 |
pca->covariance= av_mallocz(sizeof(double)*n*n); |
38 |
pca->mean= av_mallocz(sizeof(double)*n); |
39 |
|
40 |
return pca;
|
41 |
} |
42 |
|
43 |
void ff_pca_free(PCA *pca){
|
44 |
av_freep(&pca->covariance); |
45 |
av_freep(&pca->mean); |
46 |
av_free(pca); |
47 |
} |
48 |
|
49 |
void ff_pca_add(PCA *pca, double *v){ |
50 |
int i, j;
|
51 |
const int n= pca->n; |
52 |
|
53 |
for(i=0; i<n; i++){ |
54 |
pca->mean[i] += v[i]; |
55 |
for(j=i; j<n; j++)
|
56 |
pca->covariance[j + i*n] += v[i]*v[j]; |
57 |
} |
58 |
pca->count++; |
59 |
} |
60 |
|
61 |
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ |
62 |
int i, j, k, pass;
|
63 |
const int n= pca->n; |
64 |
double z[n];
|
65 |
|
66 |
memset(eigenvector, 0, sizeof(double)*n*n); |
67 |
|
68 |
for(j=0; j<n; j++){ |
69 |
pca->mean[j] /= pca->count; |
70 |
eigenvector[j + j*n] = 1.0; |
71 |
for(i=0; i<=j; i++){ |
72 |
pca->covariance[j + i*n] /= pca->count; |
73 |
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; |
74 |
pca->covariance[i + j*n] = pca->covariance[j + i*n]; |
75 |
} |
76 |
eigenvalue[j]= pca->covariance[j + j*n]; |
77 |
z[j]= 0;
|
78 |
} |
79 |
|
80 |
for(pass=0; pass < 50; pass++){ |
81 |
double sum=0; |
82 |
|
83 |
for(i=0; i<n; i++) |
84 |
for(j=i+1; j<n; j++) |
85 |
sum += fabs(pca->covariance[j + i*n]); |
86 |
|
87 |
if(sum == 0){ |
88 |
for(i=0; i<n; i++){ |
89 |
double maxvalue= -1; |
90 |
for(j=i; j<n; j++){
|
91 |
if(eigenvalue[j] > maxvalue){
|
92 |
maxvalue= eigenvalue[j]; |
93 |
k= j; |
94 |
} |
95 |
} |
96 |
eigenvalue[k]= eigenvalue[i]; |
97 |
eigenvalue[i]= maxvalue; |
98 |
for(j=0; j<n; j++){ |
99 |
double tmp= eigenvector[k + j*n];
|
100 |
eigenvector[k + j*n]= eigenvector[i + j*n]; |
101 |
eigenvector[i + j*n]= tmp; |
102 |
} |
103 |
} |
104 |
return pass;
|
105 |
} |
106 |
|
107 |
for(i=0; i<n; i++){ |
108 |
for(j=i+1; j<n; j++){ |
109 |
double covar= pca->covariance[j + i*n];
|
110 |
double t,c,s,tau,theta, h;
|
111 |
|
112 |
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 |
113 |
continue;
|
114 |
if(fabs(covar) == 0.0) //FIXME shouldnt be needed |
115 |
continue;
|
116 |
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ |
117 |
pca->covariance[j + i*n]=0.0; |
118 |
continue;
|
119 |
} |
120 |
|
121 |
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); |
122 |
theta=0.5*h/covar; |
123 |
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); |
124 |
if(theta < 0.0) t = -t; |
125 |
|
126 |
c=1.0/sqrt(1+t*t); |
127 |
s=t*c; |
128 |
tau=s/(1.0+c); |
129 |
z[i] -= t*covar; |
130 |
z[j] += t*covar; |
131 |
|
132 |
#define ROTATE(a,i,j,k,l) {\
|
133 |
double g=a[j + i*n];\
|
134 |
double h=a[l + k*n];\
|
135 |
a[j + i*n]=g-s*(h+g*tau);\ |
136 |
a[l + k*n]=h+s*(g-h*tau); } |
137 |
for(k=0; k<n; k++) { |
138 |
if(k!=i && k!=j){
|
139 |
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) |
140 |
} |
141 |
ROTATE(eigenvector,k,i,k,j) |
142 |
} |
143 |
pca->covariance[j + i*n]=0.0; |
144 |
} |
145 |
} |
146 |
for (i=0; i<n; i++) { |
147 |
eigenvalue[i] += z[i]; |
148 |
z[i]=0.0; |
149 |
} |
150 |
} |
151 |
|
152 |
return -1; |
153 |
} |
154 |
|
155 |
#ifdef TEST
|
156 |
|
157 |
#undef printf
|
158 |
#undef random
|
159 |
#include <stdio.h> |
160 |
#include <stdlib.h> |
161 |
|
162 |
int main(){
|
163 |
PCA *pca; |
164 |
int i, j, k;
|
165 |
#define LEN 8 |
166 |
double eigenvector[LEN*LEN];
|
167 |
double eigenvalue[LEN];
|
168 |
|
169 |
pca= ff_pca_init(LEN); |
170 |
|
171 |
for(i=0; i<9000000; i++){ |
172 |
double v[2*LEN+100]; |
173 |
double sum=0; |
174 |
int pos= random()%LEN;
|
175 |
int v2= (random()%101) - 50; |
176 |
v[0]= (random()%101) - 50; |
177 |
for(j=1; j<8; j++){ |
178 |
if(j<=pos) v[j]= v[0]; |
179 |
else v[j]= v2;
|
180 |
sum += v[j]; |
181 |
} |
182 |
/* for(j=0; j<LEN; j++){
|
183 |
v[j] -= v[pos];
|
184 |
}*/
|
185 |
// sum += random()%10;
|
186 |
/* for(j=0; j<LEN; j++){
|
187 |
v[j] -= sum/LEN;
|
188 |
}*/
|
189 |
// lbt1(v+100,v+100,LEN);
|
190 |
ff_pca_add(pca, v); |
191 |
} |
192 |
|
193 |
|
194 |
ff_pca(pca, eigenvector, eigenvalue); |
195 |
for(i=0; i<LEN; i++){ |
196 |
pca->count= 1;
|
197 |
pca->mean[i]= 0;
|
198 |
|
199 |
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
200 |
|
201 |
|
202 |
// pca.covariance[i + i*LEN]= pow(0.5, fabs
|
203 |
for(j=i; j<LEN; j++){
|
204 |
printf("%f ", pca->covariance[i + j*LEN]);
|
205 |
} |
206 |
printf("\n");
|
207 |
} |
208 |
|
209 |
#if 1 |
210 |
for(i=0; i<LEN; i++){ |
211 |
double v[LEN];
|
212 |
double error=0; |
213 |
memset(v, 0, sizeof(v)); |
214 |
for(j=0; j<LEN; j++){ |
215 |
for(k=0; k<LEN; k++){ |
216 |
v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
217 |
} |
218 |
v[j] /= eigenvalue[i]; |
219 |
error += fabs(v[j] - eigenvector[i + j*LEN]); |
220 |
} |
221 |
printf("%f ", error);
|
222 |
} |
223 |
printf("\n");
|
224 |
#endif
|
225 |
for(i=0; i<LEN; i++){ |
226 |
for(j=0; j<LEN; j++){ |
227 |
printf("%9.6f ", eigenvector[i + j*LEN]);
|
228 |
} |
229 |
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
230 |
} |
231 |
|
232 |
return 0; |
233 |
} |
234 |
#endif
|