Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ f66e4f5f

History | View | Annotate | Download (48 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23

    
24
/**
25
 * @file adpcm.c
26
 * ADPCM codecs.
27
 * First version by Francois Revol (revol@free.fr)
28
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
29
 *   by Mike Melanson (melanson@pcisys.net)
30
 * CD-ROM XA ADPCM codec by BERO
31
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
32
 *
33
 * Features and limitations:
34
 *
35
 * Reference documents:
36
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
37
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
38
 * http://openquicktime.sourceforge.net/plugins.htm
39
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
40
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
41
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
42
 *
43
 * CD-ROM XA:
44
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
45
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
46
 * readstr http://www.geocities.co.jp/Playtown/2004/
47
 */
48

    
49
#define BLKSIZE 1024
50

    
51
#define CLAMP_TO_SHORT(value) \
52
if (value > 32767) \
53
    value = 32767; \
54
else if (value < -32768) \
55
    value = -32768; \
56

    
57
/* step_table[] and index_table[] are from the ADPCM reference source */
58
/* This is the index table: */
59
static const int index_table[16] = {
60
    -1, -1, -1, -1, 2, 4, 6, 8,
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
};
63

    
64
/**
65
 * This is the step table. Note that many programs use slight deviations from
66
 * this table, but such deviations are negligible:
67
 */
68
static const int step_table[89] = {
69
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
70
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
71
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
72
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
73
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
74
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
75
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
76
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
77
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
78
};
79

    
80
/* These are for MS-ADPCM */
81
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
82
static const int AdaptationTable[] = {
83
        230, 230, 230, 230, 307, 409, 512, 614,
84
        768, 614, 512, 409, 307, 230, 230, 230
85
};
86

    
87
static const int AdaptCoeff1[] = {
88
        256, 512, 0, 192, 240, 460, 392
89
};
90

    
91
static const int AdaptCoeff2[] = {
92
        0, -256, 0, 64, 0, -208, -232
93
};
94

    
95
/* These are for CD-ROM XA ADPCM */
96
static const int xa_adpcm_table[5][2] = {
97
   {   0,   0 },
98
   {  60,   0 },
99
   { 115, -52 },
100
   {  98, -55 },
101
   { 122, -60 }
102
};
103

    
104
static const int ea_adpcm_table[] = {
105
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
106
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
107
};
108

    
109
static const int ct_adpcm_table[8] = {
110
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
111
    0x0133, 0x0199, 0x0200, 0x0266
112
};
113

    
114
// padded to zero where table size is less then 16
115
static const int swf_index_tables[4][16] = {
116
    /*2*/ { -1, 2 },
117
    /*3*/ { -1, -1, 2, 4 },
118
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
119
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
120
};
121

    
122
static const int yamaha_indexscale[] = {
123
    230, 230, 230, 230, 307, 409, 512, 614,
124
    230, 230, 230, 230, 307, 409, 512, 614
125
};
126

    
127
static const int yamaha_difflookup[] = {
128
    1, 3, 5, 7, 9, 11, 13, 15,
129
    -1, -3, -5, -7, -9, -11, -13, -15
130
};
131

    
132
/* end of tables */
133

    
134
typedef struct ADPCMChannelStatus {
135
    int predictor;
136
    short int step_index;
137
    int step;
138
    /* for encoding */
139
    int prev_sample;
140

    
141
    /* MS version */
142
    short sample1;
143
    short sample2;
144
    int coeff1;
145
    int coeff2;
146
    int idelta;
147
} ADPCMChannelStatus;
148

    
149
typedef struct ADPCMContext {
150
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
151
    ADPCMChannelStatus status[2];
152
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
153

    
154
    /* SWF only */
155
    int nb_bits;
156
    int nb_samples;
157
} ADPCMContext;
158

    
159
/* XXX: implement encoding */
160

    
161
#ifdef CONFIG_ENCODERS
162
static int adpcm_encode_init(AVCodecContext *avctx)
163
{
164
    if (avctx->channels > 2)
165
        return -1; /* only stereo or mono =) */
166
    switch(avctx->codec->id) {
167
    case CODEC_ID_ADPCM_IMA_QT:
168
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
169
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
170
        return -1;
171
        break;
172
    case CODEC_ID_ADPCM_IMA_WAV:
173
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
174
                                                             /* and we have 4 bytes per channel overhead */
175
        avctx->block_align = BLKSIZE;
176
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
177
        break;
178
    case CODEC_ID_ADPCM_MS:
179
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180
                                                             /* and we have 7 bytes per channel overhead */
181
        avctx->block_align = BLKSIZE;
182
        break;
183
    case CODEC_ID_ADPCM_YAMAHA:
184
        avctx->frame_size = BLKSIZE * avctx->channels;
185
        avctx->block_align = BLKSIZE;
186
        break;
187
    default:
188
        return -1;
189
        break;
190
    }
191

    
192
    avctx->coded_frame= avcodec_alloc_frame();
193
    avctx->coded_frame->key_frame= 1;
194

    
195
    return 0;
196
}
197

    
198
static int adpcm_encode_close(AVCodecContext *avctx)
199
{
200
    av_freep(&avctx->coded_frame);
201

    
202
    return 0;
203
}
204

    
205

    
206
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
207
{
208
    int delta = sample - c->prev_sample;
209
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
210
    c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
211
    CLAMP_TO_SHORT(c->prev_sample);
212
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
213
    return nibble;
214
}
215

    
216
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
217
{
218
    int predictor, nibble, bias;
219

    
220
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
221

    
222
    nibble= sample - predictor;
223
    if(nibble>=0) bias= c->idelta/2;
224
    else          bias=-c->idelta/2;
225

    
226
    nibble= (nibble + bias) / c->idelta;
227
    nibble= av_clip(nibble, -8, 7)&0x0F;
228

    
229
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
230
    CLAMP_TO_SHORT(predictor);
231

    
232
    c->sample2 = c->sample1;
233
    c->sample1 = predictor;
234

    
235
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
236
    if (c->idelta < 16) c->idelta = 16;
237

    
238
    return nibble;
239
}
240

    
241
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
242
{
243
    int nibble, delta;
244

    
245
    if(!c->step) {
246
        c->predictor = 0;
247
        c->step = 127;
248
    }
249

    
250
    delta = sample - c->predictor;
251

    
252
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
253

    
254
    c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
255
    CLAMP_TO_SHORT(c->predictor);
256
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
257
    c->step = av_clip(c->step, 127, 24567);
258

    
259
    return nibble;
260
}
261

    
262
typedef struct TrellisPath {
263
    int nibble;
264
    int prev;
265
} TrellisPath;
266

    
267
typedef struct TrellisNode {
268
    uint32_t ssd;
269
    int path;
270
    int sample1;
271
    int sample2;
272
    int step;
273
} TrellisNode;
274

    
275
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
276
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
277
{
278
#define FREEZE_INTERVAL 128
279
    //FIXME 6% faster if frontier is a compile-time constant
280
    const int frontier = 1 << avctx->trellis;
281
    const int stride = avctx->channels;
282
    const int version = avctx->codec->id;
283
    const int max_paths = frontier*FREEZE_INTERVAL;
284
    TrellisPath paths[max_paths], *p;
285
    TrellisNode node_buf[2][frontier];
286
    TrellisNode *nodep_buf[2][frontier];
287
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
288
    TrellisNode **nodes_next = nodep_buf[1];
289
    int pathn = 0, froze = -1, i, j, k;
290

    
291
    assert(!(max_paths&(max_paths-1)));
292

    
293
    memset(nodep_buf, 0, sizeof(nodep_buf));
294
    nodes[0] = &node_buf[1][0];
295
    nodes[0]->ssd = 0;
296
    nodes[0]->path = 0;
297
    nodes[0]->step = c->step_index;
298
    nodes[0]->sample1 = c->sample1;
299
    nodes[0]->sample2 = c->sample2;
300
    if(version == CODEC_ID_ADPCM_IMA_WAV)
301
        nodes[0]->sample1 = c->prev_sample;
302
    if(version == CODEC_ID_ADPCM_MS)
303
        nodes[0]->step = c->idelta;
304
    if(version == CODEC_ID_ADPCM_YAMAHA) {
305
        if(c->step == 0) {
306
            nodes[0]->step = 127;
307
            nodes[0]->sample1 = 0;
308
        } else {
309
            nodes[0]->step = c->step;
310
            nodes[0]->sample1 = c->predictor;
311
        }
312
    }
313

    
314
    for(i=0; i<n; i++) {
315
        TrellisNode *t = node_buf[i&1];
316
        TrellisNode **u;
317
        int sample = samples[i*stride];
318
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
319
        for(j=0; j<frontier && nodes[j]; j++) {
320
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
321
            const int range = (j < frontier/2) ? 1 : 0;
322
            const int step = nodes[j]->step;
323
            int nidx;
324
            if(version == CODEC_ID_ADPCM_MS) {
325
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
326
                const int div = (sample - predictor) / step;
327
                const int nmin = av_clip(div-range, -8, 6);
328
                const int nmax = av_clip(div+range, -7, 7);
329
                for(nidx=nmin; nidx<=nmax; nidx++) {
330
                    const int nibble = nidx & 0xf;
331
                    int dec_sample = predictor + nidx * step;
332
#define STORE_NODE(NAME, STEP_INDEX)\
333
                    int d;\
334
                    uint32_t ssd;\
335
                    CLAMP_TO_SHORT(dec_sample);\
336
                    d = sample - dec_sample;\
337
                    ssd = nodes[j]->ssd + d*d;\
338
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
339
                        continue;\
340
                    /* Collapse any two states with the same previous sample value. \
341
                     * One could also distinguish states by step and by 2nd to last
342
                     * sample, but the effects of that are negligible. */\
343
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
344
                        if(dec_sample == nodes_next[k]->sample1) {\
345
                            assert(ssd >= nodes_next[k]->ssd);\
346
                            goto next_##NAME;\
347
                        }\
348
                    }\
349
                    for(k=0; k<frontier; k++) {\
350
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
351
                            TrellisNode *u = nodes_next[frontier-1];\
352
                            if(!u) {\
353
                                assert(pathn < max_paths);\
354
                                u = t++;\
355
                                u->path = pathn++;\
356
                            }\
357
                            u->ssd = ssd;\
358
                            u->step = STEP_INDEX;\
359
                            u->sample2 = nodes[j]->sample1;\
360
                            u->sample1 = dec_sample;\
361
                            paths[u->path].nibble = nibble;\
362
                            paths[u->path].prev = nodes[j]->path;\
363
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
364
                            nodes_next[k] = u;\
365
                            break;\
366
                        }\
367
                    }\
368
                    next_##NAME:;
369
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
370
                }
371
            } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
372
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
373
                const int predictor = nodes[j]->sample1;\
374
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
375
                int nmin = av_clip(div-range, -7, 6);\
376
                int nmax = av_clip(div+range, -6, 7);\
377
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
378
                if(nmax<0) nmax--;\
379
                for(nidx=nmin; nidx<=nmax; nidx++) {\
380
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
381
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
382
                    STORE_NODE(NAME, STEP_INDEX);\
383
                }
384
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
385
            } else { //CODEC_ID_ADPCM_YAMAHA
386
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
387
#undef LOOP_NODES
388
#undef STORE_NODE
389
            }
390
        }
391

    
392
        u = nodes;
393
        nodes = nodes_next;
394
        nodes_next = u;
395

    
396
        // prevent overflow
397
        if(nodes[0]->ssd > (1<<28)) {
398
            for(j=1; j<frontier && nodes[j]; j++)
399
                nodes[j]->ssd -= nodes[0]->ssd;
400
            nodes[0]->ssd = 0;
401
        }
402

    
403
        // merge old paths to save memory
404
        if(i == froze + FREEZE_INTERVAL) {
405
            p = &paths[nodes[0]->path];
406
            for(k=i; k>froze; k--) {
407
                dst[k] = p->nibble;
408
                p = &paths[p->prev];
409
            }
410
            froze = i;
411
            pathn = 0;
412
            // other nodes might use paths that don't coincide with the frozen one.
413
            // checking which nodes do so is too slow, so just kill them all.
414
            // this also slightly improves quality, but I don't know why.
415
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
416
        }
417
    }
418

    
419
    p = &paths[nodes[0]->path];
420
    for(i=n-1; i>froze; i--) {
421
        dst[i] = p->nibble;
422
        p = &paths[p->prev];
423
    }
424

    
425
    c->predictor = nodes[0]->sample1;
426
    c->sample1 = nodes[0]->sample1;
427
    c->sample2 = nodes[0]->sample2;
428
    c->step_index = nodes[0]->step;
429
    c->step = nodes[0]->step;
430
    c->idelta = nodes[0]->step;
431
}
432

    
433
static int adpcm_encode_frame(AVCodecContext *avctx,
434
                            unsigned char *frame, int buf_size, void *data)
435
{
436
    int n, i, st;
437
    short *samples;
438
    unsigned char *dst;
439
    ADPCMContext *c = avctx->priv_data;
440

    
441
    dst = frame;
442
    samples = (short *)data;
443
    st= avctx->channels == 2;
444
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
445

    
446
    switch(avctx->codec->id) {
447
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
448
        break;
449
    case CODEC_ID_ADPCM_IMA_WAV:
450
        n = avctx->frame_size / 8;
451
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
452
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
453
            *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
454
            *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
455
            *dst++ = (unsigned char)c->status[0].step_index;
456
            *dst++ = 0; /* unknown */
457
            samples++;
458
            if (avctx->channels == 2) {
459
                c->status[1].prev_sample = (signed short)samples[1];
460
/*                c->status[1].step_index = 0; */
461
                *dst++ = (c->status[1].prev_sample) & 0xFF;
462
                *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
463
                *dst++ = (unsigned char)c->status[1].step_index;
464
                *dst++ = 0;
465
                samples++;
466
            }
467

    
468
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
469
            if(avctx->trellis > 0) {
470
                uint8_t buf[2][n*8];
471
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
472
                if(avctx->channels == 2)
473
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
474
                for(i=0; i<n; i++) {
475
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
476
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
477
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
478
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
479
                    if (avctx->channels == 2) {
480
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
481
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
482
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
483
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
484
                    }
485
                }
486
            } else
487
            for (; n>0; n--) {
488
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
489
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
490
                dst++;
491
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
492
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
493
                dst++;
494
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
495
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
496
                dst++;
497
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
498
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
499
                dst++;
500
                /* right channel */
501
                if (avctx->channels == 2) {
502
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
503
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
504
                    dst++;
505
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
506
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
507
                    dst++;
508
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
509
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
510
                    dst++;
511
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
512
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
513
                    dst++;
514
                }
515
                samples += 8 * avctx->channels;
516
            }
517
        break;
518
    case CODEC_ID_ADPCM_MS:
519
        for(i=0; i<avctx->channels; i++){
520
            int predictor=0;
521

    
522
            *dst++ = predictor;
523
            c->status[i].coeff1 = AdaptCoeff1[predictor];
524
            c->status[i].coeff2 = AdaptCoeff2[predictor];
525
        }
526
        for(i=0; i<avctx->channels; i++){
527
            if (c->status[i].idelta < 16)
528
                c->status[i].idelta = 16;
529

    
530
            *dst++ = c->status[i].idelta & 0xFF;
531
            *dst++ = c->status[i].idelta >> 8;
532
        }
533
        for(i=0; i<avctx->channels; i++){
534
            c->status[i].sample1= *samples++;
535

    
536
            *dst++ = c->status[i].sample1 & 0xFF;
537
            *dst++ = c->status[i].sample1 >> 8;
538
        }
539
        for(i=0; i<avctx->channels; i++){
540
            c->status[i].sample2= *samples++;
541

    
542
            *dst++ = c->status[i].sample2 & 0xFF;
543
            *dst++ = c->status[i].sample2 >> 8;
544
        }
545

    
546
        if(avctx->trellis > 0) {
547
            int n = avctx->block_align - 7*avctx->channels;
548
            uint8_t buf[2][n];
549
            if(avctx->channels == 1) {
550
                n *= 2;
551
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
552
                for(i=0; i<n; i+=2)
553
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
554
            } else {
555
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
556
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
557
                for(i=0; i<n; i++)
558
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
559
            }
560
        } else
561
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
562
            int nibble;
563
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
564
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
565
            *dst++ = nibble;
566
        }
567
        break;
568
    case CODEC_ID_ADPCM_YAMAHA:
569
        n = avctx->frame_size / 2;
570
        if(avctx->trellis > 0) {
571
            uint8_t buf[2][n*2];
572
            n *= 2;
573
            if(avctx->channels == 1) {
574
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
575
                for(i=0; i<n; i+=2)
576
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
577
            } else {
578
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
579
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
580
                for(i=0; i<n; i++)
581
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
582
            }
583
        } else
584
        for (; n>0; n--) {
585
            for(i = 0; i < avctx->channels; i++) {
586
                int nibble;
587
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
588
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
589
                *dst++ = nibble;
590
            }
591
            samples += 2 * avctx->channels;
592
        }
593
        break;
594
    default:
595
        return -1;
596
    }
597
    return dst - frame;
598
}
599
#endif //CONFIG_ENCODERS
600

    
601
static int adpcm_decode_init(AVCodecContext * avctx)
602
{
603
    ADPCMContext *c = avctx->priv_data;
604

    
605
    if(avctx->channels > 2U){
606
        return -1;
607
    }
608

    
609
    c->channel = 0;
610
    c->status[0].predictor = c->status[1].predictor = 0;
611
    c->status[0].step_index = c->status[1].step_index = 0;
612
    c->status[0].step = c->status[1].step = 0;
613

    
614
    switch(avctx->codec->id) {
615
    case CODEC_ID_ADPCM_CT:
616
        c->status[0].step = c->status[1].step = 511;
617
        break;
618
    default:
619
        break;
620
    }
621
    return 0;
622
}
623

    
624
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
625
{
626
    int step_index;
627
    int predictor;
628
    int sign, delta, diff, step;
629

    
630
    step = step_table[c->step_index];
631
    step_index = c->step_index + index_table[(unsigned)nibble];
632
    if (step_index < 0) step_index = 0;
633
    else if (step_index > 88) step_index = 88;
634

    
635
    sign = nibble & 8;
636
    delta = nibble & 7;
637
    /* perform direct multiplication instead of series of jumps proposed by
638
     * the reference ADPCM implementation since modern CPUs can do the mults
639
     * quickly enough */
640
    diff = ((2 * delta + 1) * step) >> shift;
641
    predictor = c->predictor;
642
    if (sign) predictor -= diff;
643
    else predictor += diff;
644

    
645
    CLAMP_TO_SHORT(predictor);
646
    c->predictor = predictor;
647
    c->step_index = step_index;
648

    
649
    return (short)predictor;
650
}
651

    
652
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
653
{
654
    int predictor;
655

    
656
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
657
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
658
    CLAMP_TO_SHORT(predictor);
659

    
660
    c->sample2 = c->sample1;
661
    c->sample1 = predictor;
662
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
663
    if (c->idelta < 16) c->idelta = 16;
664

    
665
    return (short)predictor;
666
}
667

    
668
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
669
{
670
    int predictor;
671
    int sign, delta, diff;
672
    int new_step;
673

    
674
    sign = nibble & 8;
675
    delta = nibble & 7;
676
    /* perform direct multiplication instead of series of jumps proposed by
677
     * the reference ADPCM implementation since modern CPUs can do the mults
678
     * quickly enough */
679
    diff = ((2 * delta + 1) * c->step) >> 3;
680
    predictor = c->predictor;
681
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
682
    if(sign)
683
        predictor = ((predictor * 254) >> 8) - diff;
684
    else
685
            predictor = ((predictor * 254) >> 8) + diff;
686
    /* calculate new step and clamp it to range 511..32767 */
687
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
688
    c->step = new_step;
689
    if(c->step < 511)
690
        c->step = 511;
691
    if(c->step > 32767)
692
        c->step = 32767;
693

    
694
    CLAMP_TO_SHORT(predictor);
695
    c->predictor = predictor;
696
    return (short)predictor;
697
}
698

    
699
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
700
{
701
    int sign, delta, diff;
702

    
703
    sign = nibble & (1<<(size-1));
704
    delta = nibble & ((1<<(size-1))-1);
705
    diff = delta << (7 + c->step + shift);
706

    
707
    if (sign)
708
        c->predictor -= diff;
709
    else
710
        c->predictor += diff;
711

    
712
    /* clamp result */
713
    if (c->predictor > 16256)
714
        c->predictor = 16256;
715
    else if (c->predictor < -16384)
716
        c->predictor = -16384;
717

    
718
    /* calculate new step */
719
    if (delta >= (2*size - 3) && c->step < 3)
720
        c->step++;
721
    else if (delta == 0 && c->step > 0)
722
        c->step--;
723

    
724
    return (short) c->predictor;
725
}
726

    
727
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
728
{
729
    if(!c->step) {
730
        c->predictor = 0;
731
        c->step = 127;
732
    }
733

    
734
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
735
    CLAMP_TO_SHORT(c->predictor);
736
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
737
    c->step = av_clip(c->step, 127, 24567);
738
    return c->predictor;
739
}
740

    
741
static void xa_decode(short *out, const unsigned char *in,
742
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
743
{
744
    int i, j;
745
    int shift,filter,f0,f1;
746
    int s_1,s_2;
747
    int d,s,t;
748

    
749
    for(i=0;i<4;i++) {
750

    
751
        shift  = 12 - (in[4+i*2] & 15);
752
        filter = in[4+i*2] >> 4;
753
        f0 = xa_adpcm_table[filter][0];
754
        f1 = xa_adpcm_table[filter][1];
755

    
756
        s_1 = left->sample1;
757
        s_2 = left->sample2;
758

    
759
        for(j=0;j<28;j++) {
760
            d = in[16+i+j*4];
761

    
762
            t = (signed char)(d<<4)>>4;
763
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
764
            CLAMP_TO_SHORT(s);
765
            *out = s;
766
            out += inc;
767
            s_2 = s_1;
768
            s_1 = s;
769
        }
770

    
771
        if (inc==2) { /* stereo */
772
            left->sample1 = s_1;
773
            left->sample2 = s_2;
774
            s_1 = right->sample1;
775
            s_2 = right->sample2;
776
            out = out + 1 - 28*2;
777
        }
778

    
779
        shift  = 12 - (in[5+i*2] & 15);
780
        filter = in[5+i*2] >> 4;
781

    
782
        f0 = xa_adpcm_table[filter][0];
783
        f1 = xa_adpcm_table[filter][1];
784

    
785
        for(j=0;j<28;j++) {
786
            d = in[16+i+j*4];
787

    
788
            t = (signed char)d >> 4;
789
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
790
            CLAMP_TO_SHORT(s);
791
            *out = s;
792
            out += inc;
793
            s_2 = s_1;
794
            s_1 = s;
795
        }
796

    
797
        if (inc==2) { /* stereo */
798
            right->sample1 = s_1;
799
            right->sample2 = s_2;
800
            out -= 1;
801
        } else {
802
            left->sample1 = s_1;
803
            left->sample2 = s_2;
804
        }
805
    }
806
}
807

    
808

    
809
/* DK3 ADPCM support macro */
810
#define DK3_GET_NEXT_NIBBLE() \
811
    if (decode_top_nibble_next) \
812
    { \
813
        nibble = (last_byte >> 4) & 0x0F; \
814
        decode_top_nibble_next = 0; \
815
    } \
816
    else \
817
    { \
818
        last_byte = *src++; \
819
        if (src >= buf + buf_size) break; \
820
        nibble = last_byte & 0x0F; \
821
        decode_top_nibble_next = 1; \
822
    }
823

    
824
static int adpcm_decode_frame(AVCodecContext *avctx,
825
                            void *data, int *data_size,
826
                            uint8_t *buf, int buf_size)
827
{
828
    ADPCMContext *c = avctx->priv_data;
829
    ADPCMChannelStatus *cs;
830
    int n, m, channel, i;
831
    int block_predictor[2];
832
    short *samples;
833
    short *samples_end;
834
    uint8_t *src;
835
    int st; /* stereo */
836

    
837
    /* DK3 ADPCM accounting variables */
838
    unsigned char last_byte = 0;
839
    unsigned char nibble;
840
    int decode_top_nibble_next = 0;
841
    int diff_channel;
842

    
843
    /* EA ADPCM state variables */
844
    uint32_t samples_in_chunk;
845
    int32_t previous_left_sample, previous_right_sample;
846
    int32_t current_left_sample, current_right_sample;
847
    int32_t next_left_sample, next_right_sample;
848
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
849
    uint8_t shift_left, shift_right;
850
    int count1, count2;
851

    
852
    if (!buf_size)
853
        return 0;
854

    
855
    //should protect all 4bit ADPCM variants
856
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
857
    //
858
    if(*data_size/4 < buf_size + 8)
859
        return -1;
860

    
861
    samples = data;
862
    samples_end= samples + *data_size/2;
863
    *data_size= 0;
864
    src = buf;
865

    
866
    st = avctx->channels == 2 ? 1 : 0;
867

    
868
    switch(avctx->codec->id) {
869
    case CODEC_ID_ADPCM_IMA_QT:
870
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
871
        channel = c->channel;
872
        cs = &(c->status[channel]);
873
        /* (pppppp) (piiiiiii) */
874

    
875
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
876
        cs->predictor = (*src++) << 8;
877
        cs->predictor |= (*src & 0x80);
878
        cs->predictor &= 0xFF80;
879

    
880
        /* sign extension */
881
        if(cs->predictor & 0x8000)
882
            cs->predictor -= 0x10000;
883

    
884
        CLAMP_TO_SHORT(cs->predictor);
885

    
886
        cs->step_index = (*src++) & 0x7F;
887

    
888
        if (cs->step_index > 88){
889
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
890
            cs->step_index = 88;
891
        }
892

    
893
        cs->step = step_table[cs->step_index];
894

    
895
        if (st && channel)
896
            samples++;
897

    
898
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
899
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
900
            samples += avctx->channels;
901
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
902
            samples += avctx->channels;
903
            src ++;
904
        }
905

    
906
        if(st) { /* handle stereo interlacing */
907
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
908
            if(channel == 1) { /* wait for the other packet before outputing anything */
909
                return src - buf;
910
            }
911
        }
912
        break;
913
    case CODEC_ID_ADPCM_IMA_WAV:
914
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
915
            buf_size = avctx->block_align;
916

    
917
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
918

    
919
        for(i=0; i<avctx->channels; i++){
920
            cs = &(c->status[i]);
921
            cs->predictor = (int16_t)(src[0] + (src[1]<<8));
922
            src+=2;
923

    
924
        // XXX: is this correct ??: *samples++ = cs->predictor;
925

    
926
            cs->step_index = *src++;
927
            if (cs->step_index > 88){
928
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
929
                cs->step_index = 88;
930
            }
931
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
932
        }
933

    
934
        while(src < buf + buf_size){
935
            for(m=0; m<4; m++){
936
                for(i=0; i<=st; i++)
937
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
938
                for(i=0; i<=st; i++)
939
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
940
                src++;
941
            }
942
            src += 4*st;
943
        }
944
        break;
945
    case CODEC_ID_ADPCM_4XM:
946
        cs = &(c->status[0]);
947
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
948
        if(st){
949
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
950
        }
951
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
952
        if(st){
953
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
954
        }
955
        if (cs->step_index < 0) cs->step_index = 0;
956
        if (cs->step_index > 88) cs->step_index = 88;
957

    
958
        m= (buf_size - (src - buf))>>st;
959
        for(i=0; i<m; i++) {
960
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
961
            if (st)
962
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
963
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
964
            if (st)
965
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
966
        }
967

    
968
        src += m<<st;
969

    
970
        break;
971
    case CODEC_ID_ADPCM_MS:
972
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
973
            buf_size = avctx->block_align;
974
        n = buf_size - 7 * avctx->channels;
975
        if (n < 0)
976
            return -1;
977
        block_predictor[0] = av_clip(*src++, 0, 7);
978
        block_predictor[1] = 0;
979
        if (st)
980
            block_predictor[1] = av_clip(*src++, 0, 7);
981
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
982
        src+=2;
983
        if (st){
984
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
985
            src+=2;
986
        }
987
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
988
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
989
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
990
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
991

    
992
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
993
        src+=2;
994
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
995
        if (st) src+=2;
996
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
997
        src+=2;
998
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
999
        if (st) src+=2;
1000

    
1001
        *samples++ = c->status[0].sample1;
1002
        if (st) *samples++ = c->status[1].sample1;
1003
        *samples++ = c->status[0].sample2;
1004
        if (st) *samples++ = c->status[1].sample2;
1005
        for(;n>0;n--) {
1006
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1007
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1008
            src ++;
1009
        }
1010
        break;
1011
    case CODEC_ID_ADPCM_IMA_DK4:
1012
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1013
            buf_size = avctx->block_align;
1014

    
1015
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1016
        c->status[0].step_index = src[2];
1017
        src += 4;
1018
        *samples++ = c->status[0].predictor;
1019
        if (st) {
1020
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1021
            c->status[1].step_index = src[2];
1022
            src += 4;
1023
            *samples++ = c->status[1].predictor;
1024
        }
1025
        while (src < buf + buf_size) {
1026

    
1027
            /* take care of the top nibble (always left or mono channel) */
1028
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1029
                (src[0] >> 4) & 0x0F, 3);
1030

    
1031
            /* take care of the bottom nibble, which is right sample for
1032
             * stereo, or another mono sample */
1033
            if (st)
1034
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1035
                    src[0] & 0x0F, 3);
1036
            else
1037
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1038
                    src[0] & 0x0F, 3);
1039

    
1040
            src++;
1041
        }
1042
        break;
1043
    case CODEC_ID_ADPCM_IMA_DK3:
1044
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1045
            buf_size = avctx->block_align;
1046

    
1047
        if(buf_size + 16 > (samples_end - samples)*3/8)
1048
            return -1;
1049

    
1050
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1051
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1052
        c->status[0].step_index = src[14];
1053
        c->status[1].step_index = src[15];
1054
        /* sign extend the predictors */
1055
        src += 16;
1056
        diff_channel = c->status[1].predictor;
1057

    
1058
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1059
         * the buffer is consumed */
1060
        while (1) {
1061

    
1062
            /* for this algorithm, c->status[0] is the sum channel and
1063
             * c->status[1] is the diff channel */
1064

    
1065
            /* process the first predictor of the sum channel */
1066
            DK3_GET_NEXT_NIBBLE();
1067
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1068

    
1069
            /* process the diff channel predictor */
1070
            DK3_GET_NEXT_NIBBLE();
1071
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1072

    
1073
            /* process the first pair of stereo PCM samples */
1074
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1075
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1076
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1077

    
1078
            /* process the second predictor of the sum channel */
1079
            DK3_GET_NEXT_NIBBLE();
1080
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1081

    
1082
            /* process the second pair of stereo PCM samples */
1083
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1084
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1085
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1086
        }
1087
        break;
1088
    case CODEC_ID_ADPCM_IMA_WS:
1089
        /* no per-block initialization; just start decoding the data */
1090
        while (src < buf + buf_size) {
1091

    
1092
            if (st) {
1093
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1094
                    (src[0] >> 4) & 0x0F, 3);
1095
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1096
                    src[0] & 0x0F, 3);
1097
            } else {
1098
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1099
                    (src[0] >> 4) & 0x0F, 3);
1100
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1101
                    src[0] & 0x0F, 3);
1102
            }
1103

    
1104
            src++;
1105
        }
1106
        break;
1107
    case CODEC_ID_ADPCM_XA:
1108
        c->status[0].sample1 = c->status[0].sample2 =
1109
        c->status[1].sample1 = c->status[1].sample2 = 0;
1110
        while (buf_size >= 128) {
1111
            xa_decode(samples, src, &c->status[0], &c->status[1],
1112
                avctx->channels);
1113
            src += 128;
1114
            samples += 28 * 8;
1115
            buf_size -= 128;
1116
        }
1117
        break;
1118
    case CODEC_ID_ADPCM_EA:
1119
        samples_in_chunk = AV_RL32(src);
1120
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1121
            src += buf_size;
1122
            break;
1123
        }
1124
        src += 4;
1125
        current_left_sample = (int16_t)AV_RL16(src);
1126
        src += 2;
1127
        previous_left_sample = (int16_t)AV_RL16(src);
1128
        src += 2;
1129
        current_right_sample = (int16_t)AV_RL16(src);
1130
        src += 2;
1131
        previous_right_sample = (int16_t)AV_RL16(src);
1132
        src += 2;
1133

    
1134
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1135
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1136
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1137
            coeff1r = ea_adpcm_table[*src & 0x0F];
1138
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1139
            src++;
1140

    
1141
            shift_left = ((*src >> 4) & 0x0F) + 8;
1142
            shift_right = (*src & 0x0F) + 8;
1143
            src++;
1144

    
1145
            for (count2 = 0; count2 < 28; count2++) {
1146
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1147
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1148
                src++;
1149

    
1150
                next_left_sample = (next_left_sample +
1151
                    (current_left_sample * coeff1l) +
1152
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1153
                next_right_sample = (next_right_sample +
1154
                    (current_right_sample * coeff1r) +
1155
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1156
                CLAMP_TO_SHORT(next_left_sample);
1157
                CLAMP_TO_SHORT(next_right_sample);
1158

    
1159
                previous_left_sample = current_left_sample;
1160
                current_left_sample = next_left_sample;
1161
                previous_right_sample = current_right_sample;
1162
                current_right_sample = next_right_sample;
1163
                *samples++ = (unsigned short)current_left_sample;
1164
                *samples++ = (unsigned short)current_right_sample;
1165
            }
1166
        }
1167
        break;
1168
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1169
        c->status[0].predictor = *src;
1170
        src += 2;
1171
        c->status[0].step_index = *src++;
1172
        src++;  /* skip another byte before getting to the meat */
1173
        while (src < buf + buf_size) {
1174
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1175
                *src & 0x0F, 3);
1176
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1177
                (*src >> 4) & 0x0F, 3);
1178
            src++;
1179
        }
1180
        break;
1181
    case CODEC_ID_ADPCM_CT:
1182
        while (src < buf + buf_size) {
1183
            if (st) {
1184
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1185
                    (src[0] >> 4) & 0x0F);
1186
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1187
                    src[0] & 0x0F);
1188
            } else {
1189
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1190
                    (src[0] >> 4) & 0x0F);
1191
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1192
                    src[0] & 0x0F);
1193
            }
1194
            src++;
1195
        }
1196
        break;
1197
    case CODEC_ID_ADPCM_SBPRO_4:
1198
    case CODEC_ID_ADPCM_SBPRO_3:
1199
    case CODEC_ID_ADPCM_SBPRO_2:
1200
        if (!c->status[0].step_index) {
1201
            /* the first byte is a raw sample */
1202
            *samples++ = 128 * (*src++ - 0x80);
1203
            if (st)
1204
              *samples++ = 128 * (*src++ - 0x80);
1205
            c->status[0].step_index = 1;
1206
        }
1207
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1208
            while (src < buf + buf_size) {
1209
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1210
                    (src[0] >> 4) & 0x0F, 4, 0);
1211
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1212
                    src[0] & 0x0F, 4, 0);
1213
                src++;
1214
            }
1215
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1216
            while (src < buf + buf_size && samples + 2 < samples_end) {
1217
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1218
                    (src[0] >> 5) & 0x07, 3, 0);
1219
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1220
                    (src[0] >> 2) & 0x07, 3, 0);
1221
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1222
                    src[0] & 0x03, 2, 0);
1223
                src++;
1224
            }
1225
        } else {
1226
            while (src < buf + buf_size && samples + 3 < samples_end) {
1227
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1228
                    (src[0] >> 6) & 0x03, 2, 2);
1229
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1230
                    (src[0] >> 4) & 0x03, 2, 2);
1231
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1232
                    (src[0] >> 2) & 0x03, 2, 2);
1233
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1234
                    src[0] & 0x03, 2, 2);
1235
                src++;
1236
            }
1237
        }
1238
        break;
1239
    case CODEC_ID_ADPCM_SWF:
1240
    {
1241
        GetBitContext gb;
1242
        const int *table;
1243
        int k0, signmask;
1244
        int size = buf_size*8;
1245

    
1246
        init_get_bits(&gb, buf, size);
1247

    
1248
//FIXME the following return -1 may be removed only after
1249
//1. correctly spliting the stream into packets at demuxer or parser level
1250
//2. checking array bounds when writing
1251
//3. moving the global nb_bits header into extradata
1252
return -1;
1253
        // first frame, read bits & inital values
1254
        if (!c->nb_bits)
1255
        {
1256
            c->nb_bits = get_bits(&gb, 2)+2;
1257
//            av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
1258
        }
1259

    
1260
        table = swf_index_tables[c->nb_bits-2];
1261
        k0 = 1 << (c->nb_bits-2);
1262
        signmask = 1 << (c->nb_bits-1);
1263

    
1264
        while (get_bits_count(&gb) <= size)
1265
        {
1266
            int i;
1267

    
1268
            c->nb_samples++;
1269
            // wrap around at every 4096 samples...
1270
            if ((c->nb_samples & 0xfff) == 1)
1271
            {
1272
                for (i = 0; i <= st; i++)
1273
                {
1274
                    *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1275
                    c->status[i].step_index = get_bits(&gb, 6);
1276
                }
1277
            }
1278

    
1279
            // similar to IMA adpcm
1280
            for (i = 0; i <= st; i++)
1281
            {
1282
                int delta = get_bits(&gb, c->nb_bits);
1283
                int step = step_table[c->status[i].step_index];
1284
                long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1285
                int k = k0;
1286

    
1287
                do {
1288
                    if (delta & k)
1289
                        vpdiff += step;
1290
                    step >>= 1;
1291
                    k >>= 1;
1292
                } while(k);
1293
                vpdiff += step;
1294

    
1295
                if (delta & signmask)
1296
                    c->status[i].predictor -= vpdiff;
1297
                else
1298
                    c->status[i].predictor += vpdiff;
1299

    
1300
                c->status[i].step_index += table[delta & (~signmask)];
1301

    
1302
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1303
                c->status[i].predictor = av_clip(c->status[i].predictor, -32768, 32767);
1304

    
1305
                *samples++ = c->status[i].predictor;
1306
            }
1307
        }
1308

    
1309
//        src += get_bits_count(&gb)*8;
1310
        src += size;
1311

    
1312
        break;
1313
    }
1314
    case CODEC_ID_ADPCM_YAMAHA:
1315
        while (src < buf + buf_size) {
1316
            if (st) {
1317
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1318
                        src[0] & 0x0F);
1319
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1320
                        (src[0] >> 4) & 0x0F);
1321
            } else {
1322
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1323
                        src[0] & 0x0F);
1324
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1325
                        (src[0] >> 4) & 0x0F);
1326
            }
1327
            src++;
1328
        }
1329
        break;
1330
    default:
1331
        return -1;
1332
    }
1333
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1334
    return src - buf;
1335
}
1336

    
1337

    
1338

    
1339
#ifdef CONFIG_ENCODERS
1340
#define ADPCM_ENCODER(id,name)                  \
1341
AVCodec name ## _encoder = {                    \
1342
    #name,                                      \
1343
    CODEC_TYPE_AUDIO,                           \
1344
    id,                                         \
1345
    sizeof(ADPCMContext),                       \
1346
    adpcm_encode_init,                          \
1347
    adpcm_encode_frame,                         \
1348
    adpcm_encode_close,                         \
1349
    NULL,                                       \
1350
};
1351
#else
1352
#define ADPCM_ENCODER(id,name)
1353
#endif
1354

    
1355
#ifdef CONFIG_DECODERS
1356
#define ADPCM_DECODER(id,name)                  \
1357
AVCodec name ## _decoder = {                    \
1358
    #name,                                      \
1359
    CODEC_TYPE_AUDIO,                           \
1360
    id,                                         \
1361
    sizeof(ADPCMContext),                       \
1362
    adpcm_decode_init,                          \
1363
    NULL,                                       \
1364
    NULL,                                       \
1365
    adpcm_decode_frame,                         \
1366
};
1367
#else
1368
#define ADPCM_DECODER(id,name)
1369
#endif
1370

    
1371
#define ADPCM_CODEC(id, name)                   \
1372
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1373

    
1374
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1375
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1376
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1377
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1378
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1379
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1380
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1381
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1382
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1383
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1384
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1385
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1386
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1387
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1388
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1389
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1390

    
1391
#undef ADPCM_CODEC