ffmpeg / libavcodec / cavs.c @ f66e4f5f
History | View | Annotate | Download (52.8 KB)
1 |
/*
|
---|---|
2 |
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
|
3 |
* Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file cavs.c
|
24 |
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder
|
25 |
* @author Stefan Gehrer <stefan.gehrer@gmx.de>
|
26 |
*/
|
27 |
|
28 |
#include "avcodec.h" |
29 |
#include "bitstream.h" |
30 |
#include "golomb.h" |
31 |
#include "mpegvideo.h" |
32 |
#include "cavsdata.h" |
33 |
|
34 |
#ifdef CONFIG_CAVS_DECODER
|
35 |
typedef struct { |
36 |
MpegEncContext s; |
37 |
Picture picture; ///< currently decoded frame
|
38 |
Picture DPB[2]; ///< reference frames |
39 |
int dist[2]; ///< temporal distances from current frame to ref frames |
40 |
int profile, level;
|
41 |
int aspect_ratio;
|
42 |
int mb_width, mb_height;
|
43 |
int pic_type;
|
44 |
int progressive;
|
45 |
int pic_structure;
|
46 |
int skip_mode_flag; ///< select between skip_count or one skip_flag per MB |
47 |
int loop_filter_disable;
|
48 |
int alpha_offset, beta_offset;
|
49 |
int ref_flag;
|
50 |
int mbx, mby; ///< macroblock coordinates |
51 |
int flags; ///< availability flags of neighbouring macroblocks |
52 |
int stc; ///< last start code |
53 |
uint8_t *cy, *cu, *cv; ///< current MB sample pointers
|
54 |
int left_qp;
|
55 |
uint8_t *top_qp; |
56 |
|
57 |
/** mv motion vector cache
|
58 |
0: D3 B2 B3 C2
|
59 |
4: A1 X0 X1 -
|
60 |
8: A3 X2 X3 -
|
61 |
|
62 |
X are the vectors in the current macroblock (5,6,9,10)
|
63 |
A is the macroblock to the left (4,8)
|
64 |
B is the macroblock to the top (1,2)
|
65 |
C is the macroblock to the top-right (3)
|
66 |
D is the macroblock to the top-left (0)
|
67 |
|
68 |
the same is repeated for backward motion vectors */
|
69 |
vector_t mv[2*4*3]; |
70 |
vector_t *top_mv[2];
|
71 |
vector_t *col_mv; |
72 |
|
73 |
/** luma pred mode cache
|
74 |
0: -- B2 B3
|
75 |
3: A1 X0 X1
|
76 |
6: A3 X2 X3 */
|
77 |
int pred_mode_Y[3*3]; |
78 |
int *top_pred_Y;
|
79 |
int l_stride, c_stride;
|
80 |
int luma_scan[4]; |
81 |
int qp;
|
82 |
int qp_fixed;
|
83 |
int cbp;
|
84 |
ScanTable scantable; |
85 |
|
86 |
/** intra prediction is done with un-deblocked samples
|
87 |
they are saved here before deblocking the MB */
|
88 |
uint8_t *top_border_y, *top_border_u, *top_border_v; |
89 |
uint8_t left_border_y[26], left_border_u[10], left_border_v[10]; |
90 |
uint8_t intern_border_y[26];
|
91 |
uint8_t topleft_border_y, topleft_border_u, topleft_border_v; |
92 |
|
93 |
void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride); |
94 |
void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride); |
95 |
uint8_t *col_type_base; |
96 |
uint8_t *col_type; |
97 |
|
98 |
/* scaling factors for MV prediction */
|
99 |
int sym_factor; ///< for scaling in symmetrical B block |
100 |
int direct_den[2]; ///< for scaling in direct B block |
101 |
int scale_den[2]; ///< for scaling neighbouring MVs |
102 |
|
103 |
int got_keyframe;
|
104 |
DCTELEM *block; |
105 |
} AVSContext; |
106 |
|
107 |
/*****************************************************************************
|
108 |
*
|
109 |
* in-loop deblocking filter
|
110 |
*
|
111 |
****************************************************************************/
|
112 |
|
113 |
static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) { |
114 |
if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
|
115 |
return 2; |
116 |
if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) ) |
117 |
return 1; |
118 |
if(b){
|
119 |
mvP += MV_BWD_OFFS; |
120 |
mvQ += MV_BWD_OFFS; |
121 |
if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) ) |
122 |
return 1; |
123 |
}else{
|
124 |
if(mvP->ref != mvQ->ref)
|
125 |
return 1; |
126 |
} |
127 |
return 0; |
128 |
} |
129 |
|
130 |
#define SET_PARAMS \
|
131 |
alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \ |
132 |
beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \ |
133 |
tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; |
134 |
|
135 |
/**
|
136 |
* in-loop deblocking filter for a single macroblock
|
137 |
*
|
138 |
* boundary strength (bs) mapping:
|
139 |
*
|
140 |
* --4---5--
|
141 |
* 0 2 |
|
142 |
* | 6 | 7 |
|
143 |
* 1 3 |
|
144 |
* ---------
|
145 |
*
|
146 |
*/
|
147 |
static void filter_mb(AVSContext *h, enum mb_t mb_type) { |
148 |
DECLARE_ALIGNED_8(uint8_t, bs[8]);
|
149 |
int qp_avg, alpha, beta, tc;
|
150 |
int i;
|
151 |
|
152 |
/* save un-deblocked lines */
|
153 |
h->topleft_border_y = h->top_border_y[h->mbx*16+15]; |
154 |
h->topleft_border_u = h->top_border_u[h->mbx*10+8]; |
155 |
h->topleft_border_v = h->top_border_v[h->mbx*10+8]; |
156 |
memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16); |
157 |
memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8); |
158 |
memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8); |
159 |
for(i=0;i<8;i++) { |
160 |
h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride); |
161 |
h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride); |
162 |
h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride); |
163 |
h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride); |
164 |
} |
165 |
if(!h->loop_filter_disable) {
|
166 |
/* determine bs */
|
167 |
if(mb_type == I_8X8)
|
168 |
*((uint64_t *)bs) = 0x0202020202020202ULL;
|
169 |
else{
|
170 |
*((uint64_t *)bs) = 0;
|
171 |
if(partition_flags[mb_type] & SPLITV){
|
172 |
bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
|
173 |
bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
|
174 |
} |
175 |
if(partition_flags[mb_type] & SPLITH){
|
176 |
bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
|
177 |
bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
|
178 |
} |
179 |
bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
|
180 |
bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
|
181 |
bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
|
182 |
bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
|
183 |
} |
184 |
if( *((uint64_t *)bs) ) {
|
185 |
if(h->flags & A_AVAIL) {
|
186 |
qp_avg = (h->qp + h->left_qp + 1) >> 1; |
187 |
SET_PARAMS; |
188 |
h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]); |
189 |
h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]); |
190 |
h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]); |
191 |
} |
192 |
qp_avg = h->qp; |
193 |
SET_PARAMS; |
194 |
h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]); |
195 |
h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
|
196 |
bs[6],bs[7]); |
197 |
|
198 |
if(h->flags & B_AVAIL) {
|
199 |
qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1; |
200 |
SET_PARAMS; |
201 |
h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]); |
202 |
h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]); |
203 |
h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]); |
204 |
} |
205 |
} |
206 |
} |
207 |
h->left_qp = h->qp; |
208 |
h->top_qp[h->mbx] = h->qp; |
209 |
} |
210 |
|
211 |
#undef SET_PARAMS
|
212 |
|
213 |
/*****************************************************************************
|
214 |
*
|
215 |
* spatial intra prediction
|
216 |
*
|
217 |
****************************************************************************/
|
218 |
|
219 |
static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top, |
220 |
uint8_t **left, int block) {
|
221 |
int i;
|
222 |
|
223 |
switch(block) {
|
224 |
case 0: |
225 |
*left = h->left_border_y; |
226 |
h->left_border_y[0] = h->left_border_y[1]; |
227 |
memset(&h->left_border_y[17],h->left_border_y[16],9); |
228 |
memcpy(&top[1],&h->top_border_y[h->mbx*16],16); |
229 |
top[17] = top[16]; |
230 |
top[0] = top[1]; |
231 |
if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
|
232 |
h->left_border_y[0] = top[0] = h->topleft_border_y; |
233 |
break;
|
234 |
case 1: |
235 |
*left = h->intern_border_y; |
236 |
for(i=0;i<8;i++) |
237 |
h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride); |
238 |
memset(&h->intern_border_y[9],h->intern_border_y[8],9); |
239 |
h->intern_border_y[0] = h->intern_border_y[1]; |
240 |
memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8); |
241 |
if(h->flags & C_AVAIL)
|
242 |
memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8); |
243 |
else
|
244 |
memset(&top[9],top[8],9); |
245 |
top[17] = top[16]; |
246 |
top[0] = top[1]; |
247 |
if(h->flags & B_AVAIL)
|
248 |
h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7]; |
249 |
break;
|
250 |
case 2: |
251 |
*left = &h->left_border_y[8];
|
252 |
memcpy(&top[1],h->cy + 7*h->l_stride,16); |
253 |
top[17] = top[16]; |
254 |
top[0] = top[1]; |
255 |
if(h->flags & A_AVAIL)
|
256 |
top[0] = h->left_border_y[8]; |
257 |
break;
|
258 |
case 3: |
259 |
*left = &h->intern_border_y[8];
|
260 |
for(i=0;i<8;i++) |
261 |
h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride); |
262 |
memset(&h->intern_border_y[17],h->intern_border_y[16],9); |
263 |
memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9); |
264 |
memset(&top[9],top[8],9); |
265 |
break;
|
266 |
} |
267 |
} |
268 |
|
269 |
static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
270 |
int y;
|
271 |
uint64_t a = unaligned64(&top[1]);
|
272 |
for(y=0;y<8;y++) { |
273 |
*((uint64_t *)(d+y*stride)) = a; |
274 |
} |
275 |
} |
276 |
|
277 |
static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
278 |
int y;
|
279 |
uint64_t a; |
280 |
for(y=0;y<8;y++) { |
281 |
a = left[y+1] * 0x0101010101010101ULL; |
282 |
*((uint64_t *)(d+y*stride)) = a; |
283 |
} |
284 |
} |
285 |
|
286 |
static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
287 |
int y;
|
288 |
uint64_t a = 0x8080808080808080ULL;
|
289 |
for(y=0;y<8;y++) |
290 |
*((uint64_t *)(d+y*stride)) = a; |
291 |
} |
292 |
|
293 |
static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
294 |
int x,y,ia;
|
295 |
int ih = 0; |
296 |
int iv = 0; |
297 |
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; |
298 |
|
299 |
for(x=0; x<4; x++) { |
300 |
ih += (x+1)*(top[5+x]-top[3-x]); |
301 |
iv += (x+1)*(left[5+x]-left[3-x]); |
302 |
} |
303 |
ia = (top[8]+left[8])<<4; |
304 |
ih = (17*ih+16)>>5; |
305 |
iv = (17*iv+16)>>5; |
306 |
for(y=0; y<8; y++) |
307 |
for(x=0; x<8; x++) |
308 |
d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5]; |
309 |
} |
310 |
|
311 |
#define LOWPASS(ARRAY,INDEX) \
|
312 |
(( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2) |
313 |
|
314 |
static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
315 |
int x,y;
|
316 |
for(y=0; y<8; y++) |
317 |
for(x=0; x<8; x++) |
318 |
d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1; |
319 |
} |
320 |
|
321 |
static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
322 |
int x,y;
|
323 |
for(y=0; y<8; y++) |
324 |
for(x=0; x<8; x++) |
325 |
d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1; |
326 |
} |
327 |
|
328 |
static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
329 |
int x,y;
|
330 |
for(y=0; y<8; y++) |
331 |
for(x=0; x<8; x++) |
332 |
if(x==y)
|
333 |
d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2; |
334 |
else if(x>y) |
335 |
d[y*stride+x] = LOWPASS(top,x-y); |
336 |
else
|
337 |
d[y*stride+x] = LOWPASS(left,y-x); |
338 |
} |
339 |
|
340 |
static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
341 |
int x,y;
|
342 |
for(y=0; y<8; y++) |
343 |
for(x=0; x<8; x++) |
344 |
d[y*stride+x] = LOWPASS(left,y+1);
|
345 |
} |
346 |
|
347 |
static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { |
348 |
int x,y;
|
349 |
for(y=0; y<8; y++) |
350 |
for(x=0; x<8; x++) |
351 |
d[y*stride+x] = LOWPASS(top,x+1);
|
352 |
} |
353 |
|
354 |
#undef LOWPASS
|
355 |
|
356 |
static inline void modify_pred(const int_fast8_t *mod_table, int *mode) { |
357 |
*mode = mod_table[*mode]; |
358 |
if(*mode < 0) { |
359 |
av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n"); |
360 |
*mode = 0;
|
361 |
} |
362 |
} |
363 |
|
364 |
/*****************************************************************************
|
365 |
*
|
366 |
* motion compensation
|
367 |
*
|
368 |
****************************************************************************/
|
369 |
|
370 |
static inline void mc_dir_part(AVSContext *h,Picture *pic,int square, |
371 |
int chroma_height,int delta,int list,uint8_t *dest_y, |
372 |
uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
|
373 |
int src_y_offset,qpel_mc_func *qpix_op,
|
374 |
h264_chroma_mc_func chroma_op,vector_t *mv){ |
375 |
MpegEncContext * const s = &h->s;
|
376 |
const int mx= mv->x + src_x_offset*8; |
377 |
const int my= mv->y + src_y_offset*8; |
378 |
const int luma_xy= (mx&3) + ((my&3)<<2); |
379 |
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride; |
380 |
uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride; |
381 |
uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride; |
382 |
int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; |
383 |
int extra_height= extra_width;
|
384 |
int emu=0; |
385 |
const int full_mx= mx>>2; |
386 |
const int full_my= my>>2; |
387 |
const int pic_width = 16*h->mb_width; |
388 |
const int pic_height = 16*h->mb_height; |
389 |
|
390 |
if(!pic->data[0]) |
391 |
return;
|
392 |
if(mx&7) extra_width -= 3; |
393 |
if(my&7) extra_height -= 3; |
394 |
|
395 |
if( full_mx < 0-extra_width |
396 |
|| full_my < 0-extra_height
|
397 |
|| full_mx + 16/*FIXME*/ > pic_width + extra_width |
398 |
|| full_my + 16/*FIXME*/ > pic_height + extra_height){ |
399 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride, |
400 |
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height); |
401 |
src_y= s->edge_emu_buffer + 2 + 2*h->l_stride; |
402 |
emu=1;
|
403 |
} |
404 |
|
405 |
qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
|
406 |
if(!square){
|
407 |
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride); |
408 |
} |
409 |
|
410 |
if(emu){
|
411 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride, |
412 |
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); |
413 |
src_cb= s->edge_emu_buffer; |
414 |
} |
415 |
chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7); |
416 |
|
417 |
if(emu){
|
418 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride, |
419 |
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); |
420 |
src_cr= s->edge_emu_buffer; |
421 |
} |
422 |
chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7); |
423 |
} |
424 |
|
425 |
static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta, |
426 |
uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr, |
427 |
int x_offset, int y_offset,qpel_mc_func *qpix_put, |
428 |
h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg, |
429 |
h264_chroma_mc_func chroma_avg, vector_t *mv){ |
430 |
qpel_mc_func *qpix_op= qpix_put; |
431 |
h264_chroma_mc_func chroma_op= chroma_put; |
432 |
|
433 |
dest_y += 2*x_offset + 2*y_offset*h->l_stride; |
434 |
dest_cb += x_offset + y_offset*h->c_stride; |
435 |
dest_cr += x_offset + y_offset*h->c_stride; |
436 |
x_offset += 8*h->mbx;
|
437 |
y_offset += 8*h->mby;
|
438 |
|
439 |
if(mv->ref >= 0){ |
440 |
Picture *ref= &h->DPB[mv->ref]; |
441 |
mc_dir_part(h, ref, square, chroma_height, delta, 0,
|
442 |
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
443 |
qpix_op, chroma_op, mv); |
444 |
|
445 |
qpix_op= qpix_avg; |
446 |
chroma_op= chroma_avg; |
447 |
} |
448 |
|
449 |
if((mv+MV_BWD_OFFS)->ref >= 0){ |
450 |
Picture *ref= &h->DPB[0];
|
451 |
mc_dir_part(h, ref, square, chroma_height, delta, 1,
|
452 |
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
453 |
qpix_op, chroma_op, mv+MV_BWD_OFFS); |
454 |
} |
455 |
} |
456 |
|
457 |
static void inter_pred(AVSContext *h, enum mb_t mb_type) { |
458 |
if(partition_flags[mb_type] == 0){ // 16x16 |
459 |
mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0, |
460 |
h->s.dsp.put_cavs_qpel_pixels_tab[0],
|
461 |
h->s.dsp.put_h264_chroma_pixels_tab[0],
|
462 |
h->s.dsp.avg_cavs_qpel_pixels_tab[0],
|
463 |
h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
|
464 |
}else{
|
465 |
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0, |
466 |
h->s.dsp.put_cavs_qpel_pixels_tab[1],
|
467 |
h->s.dsp.put_h264_chroma_pixels_tab[1],
|
468 |
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
|
469 |
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
|
470 |
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0, |
471 |
h->s.dsp.put_cavs_qpel_pixels_tab[1],
|
472 |
h->s.dsp.put_h264_chroma_pixels_tab[1],
|
473 |
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
|
474 |
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
|
475 |
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4, |
476 |
h->s.dsp.put_cavs_qpel_pixels_tab[1],
|
477 |
h->s.dsp.put_h264_chroma_pixels_tab[1],
|
478 |
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
|
479 |
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
|
480 |
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4, |
481 |
h->s.dsp.put_cavs_qpel_pixels_tab[1],
|
482 |
h->s.dsp.put_h264_chroma_pixels_tab[1],
|
483 |
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
|
484 |
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
|
485 |
} |
486 |
/* set intra prediction modes to default values */
|
487 |
h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP; |
488 |
h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP; |
489 |
} |
490 |
|
491 |
/*****************************************************************************
|
492 |
*
|
493 |
* motion vector prediction
|
494 |
*
|
495 |
****************************************************************************/
|
496 |
|
497 |
static inline void set_mvs(vector_t *mv, enum block_t size) { |
498 |
switch(size) {
|
499 |
case BLK_16X16:
|
500 |
mv[MV_STRIDE ] = mv[0];
|
501 |
mv[MV_STRIDE+1] = mv[0]; |
502 |
case BLK_16X8:
|
503 |
mv[1] = mv[0]; |
504 |
break;
|
505 |
case BLK_8X16:
|
506 |
mv[MV_STRIDE] = mv[0];
|
507 |
break;
|
508 |
} |
509 |
} |
510 |
|
511 |
static inline void store_mvs(AVSContext *h) { |
512 |
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0]; |
513 |
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1]; |
514 |
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2]; |
515 |
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3]; |
516 |
} |
517 |
|
518 |
static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) { |
519 |
int den = h->scale_den[src->ref];
|
520 |
|
521 |
*d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9; |
522 |
*d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9; |
523 |
} |
524 |
|
525 |
static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) { |
526 |
int ax, ay, bx, by, cx, cy;
|
527 |
int len_ab, len_bc, len_ca, len_mid;
|
528 |
|
529 |
/* scale candidates according to their temporal span */
|
530 |
scale_mv(h, &ax, &ay, mvA, mvP->dist); |
531 |
scale_mv(h, &bx, &by, mvB, mvP->dist); |
532 |
scale_mv(h, &cx, &cy, mvC, mvP->dist); |
533 |
/* find the geometrical median of the three candidates */
|
534 |
len_ab = abs(ax - bx) + abs(ay - by); |
535 |
len_bc = abs(bx - cx) + abs(by - cy); |
536 |
len_ca = abs(cx - ax) + abs(cy - ay); |
537 |
len_mid = mid_pred(len_ab, len_bc, len_ca); |
538 |
if(len_mid == len_ab) {
|
539 |
mvP->x = cx; |
540 |
mvP->y = cy; |
541 |
} else if(len_mid == len_bc) { |
542 |
mvP->x = ax; |
543 |
mvP->y = ay; |
544 |
} else {
|
545 |
mvP->x = bx; |
546 |
mvP->y = by; |
547 |
} |
548 |
} |
549 |
|
550 |
static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw, |
551 |
vector_t *col_mv) { |
552 |
vector_t *pmv_bw = pmv_fw + MV_BWD_OFFS; |
553 |
int den = h->direct_den[col_mv->ref];
|
554 |
int m = col_mv->x >> 31; |
555 |
|
556 |
pmv_fw->dist = h->dist[1];
|
557 |
pmv_bw->dist = h->dist[0];
|
558 |
pmv_fw->ref = 1;
|
559 |
pmv_bw->ref = 0;
|
560 |
/* scale the co-located motion vector according to its temporal span */
|
561 |
pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m; |
562 |
pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m); |
563 |
m = col_mv->y >> 31;
|
564 |
pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m; |
565 |
pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m); |
566 |
} |
567 |
|
568 |
static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) { |
569 |
vector_t *dst = src + MV_BWD_OFFS; |
570 |
|
571 |
/* backward mv is the scaled and negated forward mv */
|
572 |
dst->x = -((src->x * h->sym_factor + 256) >> 9); |
573 |
dst->y = -((src->y * h->sym_factor + 256) >> 9); |
574 |
dst->ref = 0;
|
575 |
dst->dist = h->dist[0];
|
576 |
set_mvs(dst, size); |
577 |
} |
578 |
|
579 |
static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC, |
580 |
enum mv_pred_t mode, enum block_t size, int ref) { |
581 |
vector_t *mvP = &h->mv[nP]; |
582 |
vector_t *mvA = &h->mv[nP-1];
|
583 |
vector_t *mvB = &h->mv[nP-4];
|
584 |
vector_t *mvC = &h->mv[nC]; |
585 |
const vector_t *mvP2 = NULL; |
586 |
|
587 |
mvP->ref = ref; |
588 |
mvP->dist = h->dist[mvP->ref]; |
589 |
if(mvC->ref == NOT_AVAIL)
|
590 |
mvC = &h->mv[nP-5]; // set to top-left (mvD) |
591 |
if((mode == MV_PRED_PSKIP) &&
|
592 |
((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) || |
593 |
((mvA->x | mvA->y | mvA->ref) == 0) ||
|
594 |
((mvB->x | mvB->y | mvB->ref) == 0) )) {
|
595 |
mvP2 = &un_mv; |
596 |
/* if there is only one suitable candidate, take it */
|
597 |
} else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) { |
598 |
mvP2= mvA; |
599 |
} else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) { |
600 |
mvP2= mvB; |
601 |
} else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) { |
602 |
mvP2= mvC; |
603 |
} else if(mode == MV_PRED_LEFT && mvA->ref == ref){ |
604 |
mvP2= mvA; |
605 |
} else if(mode == MV_PRED_TOP && mvB->ref == ref){ |
606 |
mvP2= mvB; |
607 |
} else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){ |
608 |
mvP2= mvC; |
609 |
} |
610 |
if(mvP2){
|
611 |
mvP->x = mvP2->x; |
612 |
mvP->y = mvP2->y; |
613 |
}else
|
614 |
mv_pred_median(h, mvP, mvA, mvB, mvC); |
615 |
|
616 |
if(mode < MV_PRED_PSKIP) {
|
617 |
mvP->x += get_se_golomb(&h->s.gb); |
618 |
mvP->y += get_se_golomb(&h->s.gb); |
619 |
} |
620 |
set_mvs(mvP,size); |
621 |
} |
622 |
|
623 |
/*****************************************************************************
|
624 |
*
|
625 |
* residual data decoding
|
626 |
*
|
627 |
****************************************************************************/
|
628 |
|
629 |
/** kth-order exponential golomb code */
|
630 |
static inline int get_ue_code(GetBitContext *gb, int order) { |
631 |
if(order) {
|
632 |
int ret = get_ue_golomb(gb) << order;
|
633 |
return ret + get_bits(gb,order);
|
634 |
} |
635 |
return get_ue_golomb(gb);
|
636 |
} |
637 |
|
638 |
/**
|
639 |
* decode coefficients from one 8x8 block, dequantize, inverse transform
|
640 |
* and add them to sample block
|
641 |
* @param r pointer to 2D VLC table
|
642 |
* @param esc_golomb_order escape codes are k-golomb with this order k
|
643 |
* @param qp quantizer
|
644 |
* @param dst location of sample block
|
645 |
* @param stride line stride in frame buffer
|
646 |
*/
|
647 |
static int decode_residual_block(AVSContext *h, GetBitContext *gb, |
648 |
const residual_vlc_t *r, int esc_golomb_order, |
649 |
int qp, uint8_t *dst, int stride) { |
650 |
int i,pos = -1; |
651 |
int level_code, esc_code, level, run, mask;
|
652 |
int level_buf[64]; |
653 |
int run_buf[64]; |
654 |
int dqm = dequant_mul[qp];
|
655 |
int dqs = dequant_shift[qp];
|
656 |
int dqa = 1 << (dqs - 1); |
657 |
const uint8_t *scantab = h->scantable.permutated;
|
658 |
DCTELEM *block = h->block; |
659 |
|
660 |
for(i=0;i<65;i++) { |
661 |
level_code = get_ue_code(gb,r->golomb_order); |
662 |
if(level_code >= ESCAPE_CODE) {
|
663 |
run = ((level_code - ESCAPE_CODE) >> 1) + 1; |
664 |
esc_code = get_ue_code(gb,esc_golomb_order); |
665 |
level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
|
666 |
while(level > r->inc_limit)
|
667 |
r++; |
668 |
mask = -(level_code & 1);
|
669 |
level = (level^mask) - mask; |
670 |
} else {
|
671 |
level = r->rltab[level_code][0];
|
672 |
if(!level) //end of block signal |
673 |
break;
|
674 |
run = r->rltab[level_code][1];
|
675 |
r += r->rltab[level_code][2];
|
676 |
} |
677 |
level_buf[i] = level; |
678 |
run_buf[i] = run; |
679 |
} |
680 |
/* inverse scan and dequantization */
|
681 |
while(--i >= 0){ |
682 |
pos += run_buf[i]; |
683 |
if(pos > 63) { |
684 |
av_log(h->s.avctx, AV_LOG_ERROR, |
685 |
"position out of block bounds at pic %d MB(%d,%d)\n",
|
686 |
h->picture.poc, h->mbx, h->mby); |
687 |
return -1; |
688 |
} |
689 |
block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs; |
690 |
} |
691 |
h->s.dsp.cavs_idct8_add(dst,block,stride); |
692 |
return 0; |
693 |
} |
694 |
|
695 |
|
696 |
static inline void decode_residual_chroma(AVSContext *h) { |
697 |
if(h->cbp & (1<<4)) |
698 |
decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
|
699 |
h->cu,h->c_stride); |
700 |
if(h->cbp & (1<<5)) |
701 |
decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
|
702 |
h->cv,h->c_stride); |
703 |
} |
704 |
|
705 |
static inline int decode_residual_inter(AVSContext *h) { |
706 |
int block;
|
707 |
|
708 |
/* get coded block pattern */
|
709 |
int cbp= get_ue_golomb(&h->s.gb);
|
710 |
if(cbp > 63){ |
711 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
|
712 |
return -1; |
713 |
} |
714 |
h->cbp = cbp_tab[cbp][1];
|
715 |
|
716 |
/* get quantizer */
|
717 |
if(h->cbp && !h->qp_fixed)
|
718 |
h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
|
719 |
for(block=0;block<4;block++) |
720 |
if(h->cbp & (1<<block)) |
721 |
decode_residual_block(h,&h->s.gb,inter_2dvlc,0,h->qp,
|
722 |
h->cy + h->luma_scan[block], h->l_stride); |
723 |
decode_residual_chroma(h); |
724 |
|
725 |
return 0; |
726 |
} |
727 |
|
728 |
/*****************************************************************************
|
729 |
*
|
730 |
* macroblock level
|
731 |
*
|
732 |
****************************************************************************/
|
733 |
|
734 |
/**
|
735 |
* initialise predictors for motion vectors and intra prediction
|
736 |
*/
|
737 |
static inline void init_mb(AVSContext *h) { |
738 |
int i;
|
739 |
|
740 |
/* copy predictors from top line (MB B and C) into cache */
|
741 |
for(i=0;i<3;i++) { |
742 |
h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i]; |
743 |
h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i]; |
744 |
} |
745 |
h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0]; |
746 |
h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1]; |
747 |
/* clear top predictors if MB B is not available */
|
748 |
if(!(h->flags & B_AVAIL)) {
|
749 |
h->mv[MV_FWD_B2] = un_mv; |
750 |
h->mv[MV_FWD_B3] = un_mv; |
751 |
h->mv[MV_BWD_B2] = un_mv; |
752 |
h->mv[MV_BWD_B3] = un_mv; |
753 |
h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL; |
754 |
h->flags &= ~(C_AVAIL|D_AVAIL); |
755 |
} else if(h->mbx) { |
756 |
h->flags |= D_AVAIL; |
757 |
} |
758 |
if(h->mbx == h->mb_width-1) //MB C not available |
759 |
h->flags &= ~C_AVAIL; |
760 |
/* clear top-right predictors if MB C is not available */
|
761 |
if(!(h->flags & C_AVAIL)) {
|
762 |
h->mv[MV_FWD_C2] = un_mv; |
763 |
h->mv[MV_BWD_C2] = un_mv; |
764 |
} |
765 |
/* clear top-left predictors if MB D is not available */
|
766 |
if(!(h->flags & D_AVAIL)) {
|
767 |
h->mv[MV_FWD_D3] = un_mv; |
768 |
h->mv[MV_BWD_D3] = un_mv; |
769 |
} |
770 |
/* set pointer for co-located macroblock type */
|
771 |
h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx]; |
772 |
} |
773 |
|
774 |
static inline void check_for_slice(AVSContext *h); |
775 |
|
776 |
/**
|
777 |
* save predictors for later macroblocks and increase
|
778 |
* macroblock address
|
779 |
* @returns 0 if end of frame is reached, 1 otherwise
|
780 |
*/
|
781 |
static inline int next_mb(AVSContext *h) { |
782 |
int i;
|
783 |
|
784 |
h->flags |= A_AVAIL; |
785 |
h->cy += 16;
|
786 |
h->cu += 8;
|
787 |
h->cv += 8;
|
788 |
/* copy mvs as predictors to the left */
|
789 |
for(i=0;i<=20;i+=4) |
790 |
h->mv[i] = h->mv[i+2];
|
791 |
/* copy bottom mvs from cache to top line */
|
792 |
h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2]; |
793 |
h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3]; |
794 |
h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2]; |
795 |
h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3]; |
796 |
/* next MB address */
|
797 |
h->mbx++; |
798 |
if(h->mbx == h->mb_width) { //new mb line |
799 |
h->flags = B_AVAIL|C_AVAIL; |
800 |
/* clear left pred_modes */
|
801 |
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; |
802 |
/* clear left mv predictors */
|
803 |
for(i=0;i<=20;i+=4) |
804 |
h->mv[i] = un_mv; |
805 |
h->mbx = 0;
|
806 |
h->mby++; |
807 |
/* re-calculate sample pointers */
|
808 |
h->cy = h->picture.data[0] + h->mby*16*h->l_stride; |
809 |
h->cu = h->picture.data[1] + h->mby*8*h->c_stride; |
810 |
h->cv = h->picture.data[2] + h->mby*8*h->c_stride; |
811 |
if(h->mby == h->mb_height) { //frame end |
812 |
return 0; |
813 |
} else {
|
814 |
//check_for_slice(h);
|
815 |
} |
816 |
} |
817 |
return 1; |
818 |
} |
819 |
|
820 |
static int decode_mb_i(AVSContext *h, int cbp_code) { |
821 |
GetBitContext *gb = &h->s.gb; |
822 |
int block, pred_mode_uv;
|
823 |
uint8_t top[18];
|
824 |
uint8_t *left = NULL;
|
825 |
uint8_t *d; |
826 |
|
827 |
init_mb(h); |
828 |
|
829 |
/* get intra prediction modes from stream */
|
830 |
for(block=0;block<4;block++) { |
831 |
int nA,nB,predpred;
|
832 |
int pos = scan3x3[block];
|
833 |
|
834 |
nA = h->pred_mode_Y[pos-1];
|
835 |
nB = h->pred_mode_Y[pos-3];
|
836 |
predpred = FFMIN(nA,nB); |
837 |
if(predpred == NOT_AVAIL) // if either is not available |
838 |
predpred = INTRA_L_LP; |
839 |
if(!get_bits1(gb)){
|
840 |
int rem_mode= get_bits(gb, 2); |
841 |
predpred = rem_mode + (rem_mode >= predpred); |
842 |
} |
843 |
h->pred_mode_Y[pos] = predpred; |
844 |
} |
845 |
pred_mode_uv = get_ue_golomb(gb); |
846 |
if(pred_mode_uv > 6) { |
847 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
|
848 |
return -1; |
849 |
} |
850 |
|
851 |
/* save pred modes before they get modified */
|
852 |
h->pred_mode_Y[3] = h->pred_mode_Y[5]; |
853 |
h->pred_mode_Y[6] = h->pred_mode_Y[8]; |
854 |
h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7]; |
855 |
h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8]; |
856 |
|
857 |
/* modify pred modes according to availability of neighbour samples */
|
858 |
if(!(h->flags & A_AVAIL)) {
|
859 |
modify_pred(left_modifier_l, &h->pred_mode_Y[4] );
|
860 |
modify_pred(left_modifier_l, &h->pred_mode_Y[7] );
|
861 |
modify_pred(left_modifier_c, &pred_mode_uv ); |
862 |
} |
863 |
if(!(h->flags & B_AVAIL)) {
|
864 |
modify_pred(top_modifier_l, &h->pred_mode_Y[4] );
|
865 |
modify_pred(top_modifier_l, &h->pred_mode_Y[5] );
|
866 |
modify_pred(top_modifier_c, &pred_mode_uv ); |
867 |
} |
868 |
|
869 |
/* get coded block pattern */
|
870 |
if(h->pic_type == FF_I_TYPE)
|
871 |
cbp_code = get_ue_golomb(gb); |
872 |
if(cbp_code > 63){ |
873 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
|
874 |
return -1; |
875 |
} |
876 |
h->cbp = cbp_tab[cbp_code][0];
|
877 |
if(h->cbp && !h->qp_fixed)
|
878 |
h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta |
879 |
|
880 |
/* luma intra prediction interleaved with residual decode/transform/add */
|
881 |
for(block=0;block<4;block++) { |
882 |
d = h->cy + h->luma_scan[block]; |
883 |
load_intra_pred_luma(h, top, &left, block); |
884 |
h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]] |
885 |
(d, top, left, h->l_stride); |
886 |
if(h->cbp & (1<<block)) |
887 |
decode_residual_block(h,gb,intra_2dvlc,1,h->qp,d,h->l_stride);
|
888 |
} |
889 |
|
890 |
/* chroma intra prediction */
|
891 |
/* extend borders by one pixel */
|
892 |
h->left_border_u[9] = h->left_border_u[8]; |
893 |
h->left_border_v[9] = h->left_border_v[8]; |
894 |
h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8]; |
895 |
h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8]; |
896 |
if(h->mbx && h->mby) {
|
897 |
h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u; |
898 |
h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v; |
899 |
} else {
|
900 |
h->left_border_u[0] = h->left_border_u[1]; |
901 |
h->left_border_v[0] = h->left_border_v[1]; |
902 |
h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1]; |
903 |
h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1]; |
904 |
} |
905 |
h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
|
906 |
h->left_border_u, h->c_stride); |
907 |
h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
|
908 |
h->left_border_v, h->c_stride); |
909 |
|
910 |
decode_residual_chroma(h); |
911 |
filter_mb(h,I_8X8); |
912 |
|
913 |
/* mark motion vectors as intra */
|
914 |
h->mv[MV_FWD_X0] = intra_mv; |
915 |
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); |
916 |
h->mv[MV_BWD_X0] = intra_mv; |
917 |
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); |
918 |
if(h->pic_type != FF_B_TYPE)
|
919 |
*h->col_type = I_8X8; |
920 |
|
921 |
return 0; |
922 |
} |
923 |
|
924 |
static void decode_mb_p(AVSContext *h, enum mb_t mb_type) { |
925 |
GetBitContext *gb = &h->s.gb; |
926 |
int ref[4]; |
927 |
|
928 |
init_mb(h); |
929 |
switch(mb_type) {
|
930 |
case P_SKIP:
|
931 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
|
932 |
break;
|
933 |
case P_16X16:
|
934 |
ref[0] = h->ref_flag ? 0 : get_bits1(gb); |
935 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
|
936 |
break;
|
937 |
case P_16X8:
|
938 |
ref[0] = h->ref_flag ? 0 : get_bits1(gb); |
939 |
ref[2] = h->ref_flag ? 0 : get_bits1(gb); |
940 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
|
941 |
mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
|
942 |
break;
|
943 |
case P_8X16:
|
944 |
ref[0] = h->ref_flag ? 0 : get_bits1(gb); |
945 |
ref[1] = h->ref_flag ? 0 : get_bits1(gb); |
946 |
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
|
947 |
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]);
|
948 |
break;
|
949 |
case P_8X8:
|
950 |
ref[0] = h->ref_flag ? 0 : get_bits1(gb); |
951 |
ref[1] = h->ref_flag ? 0 : get_bits1(gb); |
952 |
ref[2] = h->ref_flag ? 0 : get_bits1(gb); |
953 |
ref[3] = h->ref_flag ? 0 : get_bits1(gb); |
954 |
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
|
955 |
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
|
956 |
mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
|
957 |
mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
|
958 |
} |
959 |
inter_pred(h, mb_type); |
960 |
store_mvs(h); |
961 |
if(mb_type != P_SKIP)
|
962 |
decode_residual_inter(h); |
963 |
filter_mb(h,mb_type); |
964 |
*h->col_type = mb_type; |
965 |
} |
966 |
|
967 |
static void decode_mb_b(AVSContext *h, enum mb_t mb_type) { |
968 |
int block;
|
969 |
enum sub_mb_t sub_type[4]; |
970 |
int flags;
|
971 |
|
972 |
init_mb(h); |
973 |
|
974 |
/* reset all MVs */
|
975 |
h->mv[MV_FWD_X0] = dir_mv; |
976 |
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); |
977 |
h->mv[MV_BWD_X0] = dir_mv; |
978 |
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); |
979 |
switch(mb_type) {
|
980 |
case B_SKIP:
|
981 |
case B_DIRECT:
|
982 |
if(!(*h->col_type)) {
|
983 |
/* intra MB at co-location, do in-plane prediction */
|
984 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
|
985 |
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
|
986 |
} else
|
987 |
/* direct prediction from co-located P MB, block-wise */
|
988 |
for(block=0;block<4;block++) |
989 |
mv_pred_direct(h,&h->mv[mv_scan[block]], |
990 |
&h->col_mv[(h->mby*h->mb_width+h->mbx)*4 + block]);
|
991 |
break;
|
992 |
case B_FWD_16X16:
|
993 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
|
994 |
break;
|
995 |
case B_SYM_16X16:
|
996 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
|
997 |
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16); |
998 |
break;
|
999 |
case B_BWD_16X16:
|
1000 |
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
|
1001 |
break;
|
1002 |
case B_8X8:
|
1003 |
for(block=0;block<4;block++) |
1004 |
sub_type[block] = get_bits(&h->s.gb,2);
|
1005 |
for(block=0;block<4;block++) { |
1006 |
switch(sub_type[block]) {
|
1007 |
case B_SUB_DIRECT:
|
1008 |
if(!(*h->col_type)) {
|
1009 |
/* intra MB at co-location, do in-plane prediction */
|
1010 |
mv_pred(h, mv_scan[block], mv_scan[block]-3,
|
1011 |
MV_PRED_BSKIP, BLK_8X8, 1);
|
1012 |
mv_pred(h, mv_scan[block]+MV_BWD_OFFS, |
1013 |
mv_scan[block]-3+MV_BWD_OFFS,
|
1014 |
MV_PRED_BSKIP, BLK_8X8, 0);
|
1015 |
} else
|
1016 |
mv_pred_direct(h,&h->mv[mv_scan[block]], |
1017 |
&h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
|
1018 |
break;
|
1019 |
case B_SUB_FWD:
|
1020 |
mv_pred(h, mv_scan[block], mv_scan[block]-3,
|
1021 |
MV_PRED_MEDIAN, BLK_8X8, 1);
|
1022 |
break;
|
1023 |
case B_SUB_SYM:
|
1024 |
mv_pred(h, mv_scan[block], mv_scan[block]-3,
|
1025 |
MV_PRED_MEDIAN, BLK_8X8, 1);
|
1026 |
mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8); |
1027 |
break;
|
1028 |
} |
1029 |
} |
1030 |
for(block=0;block<4;block++) { |
1031 |
if(sub_type[block] == B_SUB_BWD)
|
1032 |
mv_pred(h, mv_scan[block]+MV_BWD_OFFS, |
1033 |
mv_scan[block]+MV_BWD_OFFS-3,
|
1034 |
MV_PRED_MEDIAN, BLK_8X8, 0);
|
1035 |
} |
1036 |
break;
|
1037 |
default:
|
1038 |
assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8)); |
1039 |
flags = partition_flags[mb_type]; |
1040 |
if(mb_type & 1) { /* 16x8 macroblock types */ |
1041 |
if(flags & FWD0)
|
1042 |
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
|
1043 |
if(flags & SYM0)
|
1044 |
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8); |
1045 |
if(flags & FWD1)
|
1046 |
mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
|
1047 |
if(flags & SYM1)
|
1048 |
mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8); |
1049 |
if(flags & BWD0)
|
1050 |
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
|
1051 |
if(flags & BWD1)
|
1052 |
mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
|
1053 |
} else { /* 8x16 macroblock types */ |
1054 |
if(flags & FWD0)
|
1055 |
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
|
1056 |
if(flags & SYM0)
|
1057 |
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16); |
1058 |
if(flags & FWD1)
|
1059 |
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
|
1060 |
if(flags & SYM1)
|
1061 |
mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16); |
1062 |
if(flags & BWD0)
|
1063 |
mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
|
1064 |
if(flags & BWD1)
|
1065 |
mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0);
|
1066 |
} |
1067 |
} |
1068 |
inter_pred(h, mb_type); |
1069 |
if(mb_type != B_SKIP)
|
1070 |
decode_residual_inter(h); |
1071 |
filter_mb(h,mb_type); |
1072 |
} |
1073 |
|
1074 |
/*****************************************************************************
|
1075 |
*
|
1076 |
* slice level
|
1077 |
*
|
1078 |
****************************************************************************/
|
1079 |
|
1080 |
static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) { |
1081 |
if(h->stc > 0xAF) |
1082 |
av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
|
1083 |
h->mby = h->stc; |
1084 |
if((h->mby == 0) && (!h->qp_fixed)){ |
1085 |
h->qp_fixed = get_bits1(gb); |
1086 |
h->qp = get_bits(gb,6);
|
1087 |
} |
1088 |
/* inter frame or second slice can have weighting params */
|
1089 |
if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2)) |
1090 |
if(get_bits1(gb)) { //slice_weighting_flag |
1091 |
av_log(h->s.avctx, AV_LOG_ERROR, |
1092 |
"weighted prediction not yet supported\n");
|
1093 |
} |
1094 |
return 0; |
1095 |
} |
1096 |
|
1097 |
static inline void check_for_slice(AVSContext *h) { |
1098 |
GetBitContext *gb = &h->s.gb; |
1099 |
int align;
|
1100 |
align = (-get_bits_count(gb)) & 7;
|
1101 |
if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) { |
1102 |
get_bits_long(gb,24+align);
|
1103 |
h->stc = get_bits(gb,8);
|
1104 |
decode_slice_header(h,gb); |
1105 |
} |
1106 |
} |
1107 |
|
1108 |
/*****************************************************************************
|
1109 |
*
|
1110 |
* frame level
|
1111 |
*
|
1112 |
****************************************************************************/
|
1113 |
|
1114 |
static void init_pic(AVSContext *h) { |
1115 |
int i;
|
1116 |
|
1117 |
/* clear some predictors */
|
1118 |
for(i=0;i<=20;i+=4) |
1119 |
h->mv[i] = un_mv; |
1120 |
h->mv[MV_BWD_X0] = dir_mv; |
1121 |
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); |
1122 |
h->mv[MV_FWD_X0] = dir_mv; |
1123 |
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); |
1124 |
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; |
1125 |
h->cy = h->picture.data[0];
|
1126 |
h->cu = h->picture.data[1];
|
1127 |
h->cv = h->picture.data[2];
|
1128 |
h->l_stride = h->picture.linesize[0];
|
1129 |
h->c_stride = h->picture.linesize[1];
|
1130 |
h->luma_scan[2] = 8*h->l_stride; |
1131 |
h->luma_scan[3] = 8*h->l_stride+8; |
1132 |
h->mbx = h->mby = 0;
|
1133 |
h->flags = 0;
|
1134 |
} |
1135 |
|
1136 |
static int decode_pic(AVSContext *h) { |
1137 |
MpegEncContext *s = &h->s; |
1138 |
int skip_count;
|
1139 |
enum mb_t mb_type;
|
1140 |
|
1141 |
if (!s->context_initialized) {
|
1142 |
s->avctx->idct_algo = FF_IDCT_CAVS; |
1143 |
if (MPV_common_init(s) < 0) |
1144 |
return -1; |
1145 |
ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct); |
1146 |
} |
1147 |
get_bits(&s->gb,16);//bbv_dwlay |
1148 |
if(h->stc == PIC_PB_START_CODE) {
|
1149 |
h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
|
1150 |
if(h->pic_type > FF_B_TYPE) {
|
1151 |
av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
|
1152 |
return -1; |
1153 |
} |
1154 |
/* make sure we have the reference frames we need */
|
1155 |
if(!h->DPB[0].data[0] || |
1156 |
(!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE)) |
1157 |
return -1; |
1158 |
} else {
|
1159 |
h->pic_type = FF_I_TYPE; |
1160 |
if(get_bits1(&s->gb))
|
1161 |
get_bits(&s->gb,16);//time_code |
1162 |
} |
1163 |
/* release last B frame */
|
1164 |
if(h->picture.data[0]) |
1165 |
s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture); |
1166 |
|
1167 |
s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture); |
1168 |
init_pic(h); |
1169 |
h->picture.poc = get_bits(&s->gb,8)*2; |
1170 |
|
1171 |
/* get temporal distances and MV scaling factors */
|
1172 |
if(h->pic_type != FF_B_TYPE) {
|
1173 |
h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512; |
1174 |
} else {
|
1175 |
h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512; |
1176 |
} |
1177 |
h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512; |
1178 |
h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0; |
1179 |
h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0; |
1180 |
if(h->pic_type == FF_B_TYPE) {
|
1181 |
h->sym_factor = h->dist[0]*h->scale_den[1]; |
1182 |
} else {
|
1183 |
h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0; |
1184 |
h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0; |
1185 |
} |
1186 |
|
1187 |
if(s->low_delay)
|
1188 |
get_ue_golomb(&s->gb); //bbv_check_times
|
1189 |
h->progressive = get_bits1(&s->gb); |
1190 |
if(h->progressive)
|
1191 |
h->pic_structure = 1;
|
1192 |
else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) ) |
1193 |
get_bits1(&s->gb); //advanced_pred_mode_disable
|
1194 |
skip_bits1(&s->gb); //top_field_first
|
1195 |
skip_bits1(&s->gb); //repeat_first_field
|
1196 |
h->qp_fixed = get_bits1(&s->gb); |
1197 |
h->qp = get_bits(&s->gb,6);
|
1198 |
if(h->pic_type == FF_I_TYPE) {
|
1199 |
if(!h->progressive && !h->pic_structure)
|
1200 |
skip_bits1(&s->gb);//what is this?
|
1201 |
skip_bits(&s->gb,4); //reserved bits |
1202 |
} else {
|
1203 |
if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1)) |
1204 |
h->ref_flag = get_bits1(&s->gb); |
1205 |
skip_bits(&s->gb,4); //reserved bits |
1206 |
h->skip_mode_flag = get_bits1(&s->gb); |
1207 |
} |
1208 |
h->loop_filter_disable = get_bits1(&s->gb); |
1209 |
if(!h->loop_filter_disable && get_bits1(&s->gb)) {
|
1210 |
h->alpha_offset = get_se_golomb(&s->gb); |
1211 |
h->beta_offset = get_se_golomb(&s->gb); |
1212 |
} else {
|
1213 |
h->alpha_offset = h->beta_offset = 0;
|
1214 |
} |
1215 |
check_for_slice(h); |
1216 |
if(h->pic_type == FF_I_TYPE) {
|
1217 |
do {
|
1218 |
decode_mb_i(h, 0);
|
1219 |
} while(next_mb(h));
|
1220 |
} else if(h->pic_type == FF_P_TYPE) { |
1221 |
do {
|
1222 |
if(h->skip_mode_flag) {
|
1223 |
skip_count = get_ue_golomb(&s->gb); |
1224 |
while(skip_count--) {
|
1225 |
decode_mb_p(h,P_SKIP); |
1226 |
if(!next_mb(h))
|
1227 |
goto done;
|
1228 |
} |
1229 |
mb_type = get_ue_golomb(&s->gb) + P_16X16; |
1230 |
} else
|
1231 |
mb_type = get_ue_golomb(&s->gb) + P_SKIP; |
1232 |
if(mb_type > P_8X8) {
|
1233 |
decode_mb_i(h, mb_type - P_8X8 - 1);
|
1234 |
} else
|
1235 |
decode_mb_p(h,mb_type); |
1236 |
} while(next_mb(h));
|
1237 |
} else { /* FF_B_TYPE */ |
1238 |
do {
|
1239 |
if(h->skip_mode_flag) {
|
1240 |
skip_count = get_ue_golomb(&s->gb); |
1241 |
while(skip_count--) {
|
1242 |
decode_mb_b(h,B_SKIP); |
1243 |
if(!next_mb(h))
|
1244 |
goto done;
|
1245 |
} |
1246 |
mb_type = get_ue_golomb(&s->gb) + B_DIRECT; |
1247 |
} else
|
1248 |
mb_type = get_ue_golomb(&s->gb) + B_SKIP; |
1249 |
if(mb_type > B_8X8) {
|
1250 |
decode_mb_i(h, mb_type - B_8X8 - 1);
|
1251 |
} else
|
1252 |
decode_mb_b(h,mb_type); |
1253 |
} while(next_mb(h));
|
1254 |
} |
1255 |
done:
|
1256 |
if(h->pic_type != FF_B_TYPE) {
|
1257 |
if(h->DPB[1].data[0]) |
1258 |
s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
|
1259 |
memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture)); |
1260 |
memcpy(&h->DPB[0], &h->picture, sizeof(Picture)); |
1261 |
memset(&h->picture,0,sizeof(Picture)); |
1262 |
} |
1263 |
return 0; |
1264 |
} |
1265 |
|
1266 |
/*****************************************************************************
|
1267 |
*
|
1268 |
* headers and interface
|
1269 |
*
|
1270 |
****************************************************************************/
|
1271 |
|
1272 |
/**
|
1273 |
* some predictions require data from the top-neighbouring macroblock.
|
1274 |
* this data has to be stored for one complete row of macroblocks
|
1275 |
* and this storage space is allocated here
|
1276 |
*/
|
1277 |
static void init_top_lines(AVSContext *h) { |
1278 |
/* alloc top line of predictors */
|
1279 |
h->top_qp = av_malloc( h->mb_width); |
1280 |
h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t)); |
1281 |
h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t)); |
1282 |
h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y)); |
1283 |
h->top_border_y = av_malloc((h->mb_width+1)*16); |
1284 |
h->top_border_u = av_malloc((h->mb_width)*10);
|
1285 |
h->top_border_v = av_malloc((h->mb_width)*10);
|
1286 |
|
1287 |
/* alloc space for co-located MVs and types */
|
1288 |
h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t)); |
1289 |
h->col_type_base = av_malloc(h->mb_width*h->mb_height); |
1290 |
h->block = av_mallocz(64*sizeof(DCTELEM)); |
1291 |
} |
1292 |
|
1293 |
static int decode_seq_header(AVSContext *h) { |
1294 |
MpegEncContext *s = &h->s; |
1295 |
extern const AVRational ff_frame_rate_tab[]; |
1296 |
int frame_rate_code;
|
1297 |
|
1298 |
h->profile = get_bits(&s->gb,8);
|
1299 |
h->level = get_bits(&s->gb,8);
|
1300 |
skip_bits1(&s->gb); //progressive sequence
|
1301 |
s->width = get_bits(&s->gb,14);
|
1302 |
s->height = get_bits(&s->gb,14);
|
1303 |
skip_bits(&s->gb,2); //chroma format |
1304 |
skip_bits(&s->gb,3); //sample_precision |
1305 |
h->aspect_ratio = get_bits(&s->gb,4);
|
1306 |
frame_rate_code = get_bits(&s->gb,4);
|
1307 |
skip_bits(&s->gb,18);//bit_rate_lower |
1308 |
skip_bits1(&s->gb); //marker_bit
|
1309 |
skip_bits(&s->gb,12);//bit_rate_upper |
1310 |
s->low_delay = get_bits1(&s->gb); |
1311 |
h->mb_width = (s->width + 15) >> 4; |
1312 |
h->mb_height = (s->height + 15) >> 4; |
1313 |
h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num; |
1314 |
h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den; |
1315 |
h->s.avctx->width = s->width; |
1316 |
h->s.avctx->height = s->height; |
1317 |
if(!h->top_qp)
|
1318 |
init_top_lines(h); |
1319 |
return 0; |
1320 |
} |
1321 |
|
1322 |
static void cavs_flush(AVCodecContext * avctx) { |
1323 |
AVSContext *h = avctx->priv_data; |
1324 |
h->got_keyframe = 0;
|
1325 |
} |
1326 |
|
1327 |
static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size, |
1328 |
uint8_t * buf, int buf_size) {
|
1329 |
AVSContext *h = avctx->priv_data; |
1330 |
MpegEncContext *s = &h->s; |
1331 |
int input_size;
|
1332 |
const uint8_t *buf_end;
|
1333 |
const uint8_t *buf_ptr;
|
1334 |
AVFrame *picture = data; |
1335 |
uint32_t stc; |
1336 |
|
1337 |
s->avctx = avctx; |
1338 |
|
1339 |
if (buf_size == 0) { |
1340 |
if(!s->low_delay && h->DPB[0].data[0]) { |
1341 |
*data_size = sizeof(AVPicture);
|
1342 |
*picture = *(AVFrame *) &h->DPB[0];
|
1343 |
} |
1344 |
return 0; |
1345 |
} |
1346 |
|
1347 |
buf_ptr = buf; |
1348 |
buf_end = buf + buf_size; |
1349 |
for(;;) {
|
1350 |
buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc); |
1351 |
if(stc & 0xFFFFFE00) |
1352 |
return FFMAX(0, buf_ptr - buf - s->parse_context.last_index); |
1353 |
input_size = (buf_end - buf_ptr)*8;
|
1354 |
switch(stc) {
|
1355 |
case SEQ_START_CODE:
|
1356 |
init_get_bits(&s->gb, buf_ptr, input_size); |
1357 |
decode_seq_header(h); |
1358 |
break;
|
1359 |
case PIC_I_START_CODE:
|
1360 |
if(!h->got_keyframe) {
|
1361 |
if(h->DPB[0].data[0]) |
1362 |
avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
|
1363 |
if(h->DPB[1].data[0]) |
1364 |
avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
|
1365 |
h->got_keyframe = 1;
|
1366 |
} |
1367 |
case PIC_PB_START_CODE:
|
1368 |
*data_size = 0;
|
1369 |
if(!h->got_keyframe)
|
1370 |
break;
|
1371 |
init_get_bits(&s->gb, buf_ptr, input_size); |
1372 |
h->stc = stc; |
1373 |
if(decode_pic(h))
|
1374 |
break;
|
1375 |
*data_size = sizeof(AVPicture);
|
1376 |
if(h->pic_type != FF_B_TYPE) {
|
1377 |
if(h->DPB[1].data[0]) { |
1378 |
*picture = *(AVFrame *) &h->DPB[1];
|
1379 |
} else {
|
1380 |
*data_size = 0;
|
1381 |
} |
1382 |
} else
|
1383 |
*picture = *(AVFrame *) &h->picture; |
1384 |
break;
|
1385 |
case EXT_START_CODE:
|
1386 |
//mpeg_decode_extension(avctx,buf_ptr, input_size);
|
1387 |
break;
|
1388 |
case USER_START_CODE:
|
1389 |
//mpeg_decode_user_data(avctx,buf_ptr, input_size);
|
1390 |
break;
|
1391 |
default:
|
1392 |
if (stc >= SLICE_MIN_START_CODE &&
|
1393 |
stc <= SLICE_MAX_START_CODE) { |
1394 |
init_get_bits(&s->gb, buf_ptr, input_size); |
1395 |
decode_slice_header(h, &s->gb); |
1396 |
} |
1397 |
break;
|
1398 |
} |
1399 |
} |
1400 |
} |
1401 |
|
1402 |
static int cavs_decode_init(AVCodecContext * avctx) { |
1403 |
AVSContext *h = avctx->priv_data; |
1404 |
MpegEncContext * const s = &h->s;
|
1405 |
|
1406 |
MPV_decode_defaults(s); |
1407 |
s->avctx = avctx; |
1408 |
|
1409 |
avctx->pix_fmt= PIX_FMT_YUV420P; |
1410 |
|
1411 |
h->luma_scan[0] = 0; |
1412 |
h->luma_scan[1] = 8; |
1413 |
h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert; |
1414 |
h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz; |
1415 |
h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp; |
1416 |
h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left; |
1417 |
h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right; |
1418 |
h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left; |
1419 |
h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top; |
1420 |
h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128; |
1421 |
h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp; |
1422 |
h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz; |
1423 |
h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert; |
1424 |
h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane; |
1425 |
h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left; |
1426 |
h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top; |
1427 |
h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128; |
1428 |
h->mv[ 7] = un_mv;
|
1429 |
h->mv[19] = un_mv;
|
1430 |
return 0; |
1431 |
} |
1432 |
|
1433 |
static int cavs_decode_end(AVCodecContext * avctx) { |
1434 |
AVSContext *h = avctx->priv_data; |
1435 |
|
1436 |
av_free(h->top_qp); |
1437 |
av_free(h->top_mv[0]);
|
1438 |
av_free(h->top_mv[1]);
|
1439 |
av_free(h->top_pred_Y); |
1440 |
av_free(h->top_border_y); |
1441 |
av_free(h->top_border_u); |
1442 |
av_free(h->top_border_v); |
1443 |
av_free(h->col_mv); |
1444 |
av_free(h->col_type_base); |
1445 |
av_free(h->block); |
1446 |
return 0; |
1447 |
} |
1448 |
|
1449 |
AVCodec cavs_decoder = { |
1450 |
"cavs",
|
1451 |
CODEC_TYPE_VIDEO, |
1452 |
CODEC_ID_CAVS, |
1453 |
sizeof(AVSContext),
|
1454 |
cavs_decode_init, |
1455 |
NULL,
|
1456 |
cavs_decode_end, |
1457 |
cavs_decode_frame, |
1458 |
CODEC_CAP_DR1 | CODEC_CAP_DELAY, |
1459 |
.flush= cavs_flush, |
1460 |
}; |
1461 |
#endif /* CONFIG_CAVS_DECODER */ |
1462 |
|
1463 |
#ifdef CONFIG_CAVSVIDEO_PARSER
|
1464 |
/**
|
1465 |
* finds the end of the current frame in the bitstream.
|
1466 |
* @return the position of the first byte of the next frame, or -1
|
1467 |
*/
|
1468 |
static int cavs_find_frame_end(ParseContext *pc, const uint8_t *buf, |
1469 |
int buf_size) {
|
1470 |
int pic_found, i;
|
1471 |
uint32_t state; |
1472 |
|
1473 |
pic_found= pc->frame_start_found; |
1474 |
state= pc->state; |
1475 |
|
1476 |
i=0;
|
1477 |
if(!pic_found){
|
1478 |
for(i=0; i<buf_size; i++){ |
1479 |
state= (state<<8) | buf[i];
|
1480 |
if(state == PIC_I_START_CODE || state == PIC_PB_START_CODE){
|
1481 |
i++; |
1482 |
pic_found=1;
|
1483 |
break;
|
1484 |
} |
1485 |
} |
1486 |
} |
1487 |
|
1488 |
if(pic_found){
|
1489 |
/* EOF considered as end of frame */
|
1490 |
if (buf_size == 0) |
1491 |
return 0; |
1492 |
for(; i<buf_size; i++){
|
1493 |
state= (state<<8) | buf[i];
|
1494 |
if((state&0xFFFFFF00) == 0x100){ |
1495 |
if(state < SLICE_MIN_START_CODE || state > SLICE_MAX_START_CODE){
|
1496 |
pc->frame_start_found=0;
|
1497 |
pc->state=-1;
|
1498 |
return i-3; |
1499 |
} |
1500 |
} |
1501 |
} |
1502 |
} |
1503 |
pc->frame_start_found= pic_found; |
1504 |
pc->state= state; |
1505 |
return END_NOT_FOUND;
|
1506 |
} |
1507 |
|
1508 |
static int cavsvideo_parse(AVCodecParserContext *s, |
1509 |
AVCodecContext *avctx, |
1510 |
uint8_t **poutbuf, int *poutbuf_size,
|
1511 |
const uint8_t *buf, int buf_size) |
1512 |
{ |
1513 |
ParseContext *pc = s->priv_data; |
1514 |
int next;
|
1515 |
|
1516 |
if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
|
1517 |
next= buf_size; |
1518 |
}else{
|
1519 |
next= cavs_find_frame_end(pc, buf, buf_size); |
1520 |
|
1521 |
if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) { |
1522 |
*poutbuf = NULL;
|
1523 |
*poutbuf_size = 0;
|
1524 |
return buf_size;
|
1525 |
} |
1526 |
} |
1527 |
*poutbuf = (uint8_t *)buf; |
1528 |
*poutbuf_size = buf_size; |
1529 |
return next;
|
1530 |
} |
1531 |
|
1532 |
AVCodecParser cavsvideo_parser = { |
1533 |
{ CODEC_ID_CAVS }, |
1534 |
sizeof(ParseContext1),
|
1535 |
NULL,
|
1536 |
cavsvideo_parse, |
1537 |
ff_parse1_close, |
1538 |
ff_mpeg4video_split, |
1539 |
}; |
1540 |
#endif /* CONFIG_CAVSVIDEO_PARSER */ |