ffmpeg / libavcodec / imc.c @ f66e4f5f
History | View | Annotate | Download (23.8 KB)
1 |
/*
|
---|---|
2 |
* IMC compatible decoder
|
3 |
* Copyright (c) 2002-2004 Maxim Poliakovski
|
4 |
* Copyright (c) 2006 Benjamin Larsson
|
5 |
* Copyright (c) 2006 Konstantin Shishkov
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*
|
23 |
*/
|
24 |
|
25 |
/**
|
26 |
* @file imc.c IMC - Intel Music Coder
|
27 |
* A mdct based codec using a 256 points large transform
|
28 |
* divied into 32 bands with some mix of scale factors.
|
29 |
* Only mono is supported.
|
30 |
*
|
31 |
*/
|
32 |
|
33 |
|
34 |
#include <math.h> |
35 |
#include <stddef.h> |
36 |
#include <stdio.h> |
37 |
|
38 |
#define ALT_BITSTREAM_READER
|
39 |
#include "avcodec.h" |
40 |
#include "bitstream.h" |
41 |
#include "dsputil.h" |
42 |
|
43 |
#include "imcdata.h" |
44 |
|
45 |
#define IMC_FRAME_ID 0x21 |
46 |
#define BANDS 32 |
47 |
#define COEFFS 256 |
48 |
|
49 |
typedef struct { |
50 |
float old_floor[BANDS];
|
51 |
float flcoeffs1[BANDS];
|
52 |
float flcoeffs2[BANDS];
|
53 |
float flcoeffs3[BANDS];
|
54 |
float flcoeffs4[BANDS];
|
55 |
float flcoeffs5[BANDS];
|
56 |
float flcoeffs6[BANDS];
|
57 |
float CWdecoded[COEFFS];
|
58 |
|
59 |
/** MDCT tables */
|
60 |
//@{
|
61 |
float mdct_sine_window[COEFFS];
|
62 |
float post_cos[COEFFS];
|
63 |
float post_sin[COEFFS];
|
64 |
float pre_coef1[COEFFS];
|
65 |
float pre_coef2[COEFFS];
|
66 |
float last_fft_im[COEFFS];
|
67 |
//@}
|
68 |
|
69 |
int bandWidthT[BANDS]; ///< codewords per band |
70 |
int bitsBandT[BANDS]; ///< how many bits per codeword in band |
71 |
int CWlengthT[COEFFS]; ///< how many bits in each codeword |
72 |
int levlCoeffBuf[BANDS];
|
73 |
int bandFlagsBuf[BANDS]; ///< flags for each band |
74 |
int sumLenArr[BANDS]; ///< bits for all coeffs in band |
75 |
int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not |
76 |
int skipFlagBits[BANDS]; ///< bits used to code skip flags |
77 |
int skipFlagCount[BANDS]; ///< skipped coeffients per band |
78 |
int skipFlags[COEFFS]; ///< skip coefficient decoding or not |
79 |
int codewords[COEFFS]; ///< raw codewords read from bitstream |
80 |
float sqrt_tab[30]; |
81 |
GetBitContext gb; |
82 |
VLC huffman_vlc[4][4]; |
83 |
int decoder_reset;
|
84 |
float one_div_log2;
|
85 |
|
86 |
DSPContext dsp; |
87 |
FFTContext fft; |
88 |
DECLARE_ALIGNED_16(FFTComplex, samples[COEFFS/2]);
|
89 |
DECLARE_ALIGNED_16(float, out_samples[COEFFS]);
|
90 |
} IMCContext; |
91 |
|
92 |
|
93 |
static int imc_decode_init(AVCodecContext * avctx) |
94 |
{ |
95 |
int i, j;
|
96 |
IMCContext *q = avctx->priv_data; |
97 |
double r1, r2;
|
98 |
|
99 |
q->decoder_reset = 1;
|
100 |
|
101 |
for(i = 0; i < BANDS; i++) |
102 |
q->old_floor[i] = 1.0; |
103 |
|
104 |
/* Build mdct window, a simple sine window normalized with sqrt(2) */
|
105 |
for(i = 0; i < COEFFS; i++) |
106 |
q->mdct_sine_window[i] = sin((i + 0.5) / 512.0 * M_PI) * sqrt(2.0); |
107 |
for(i = 0; i < COEFFS/2; i++){ |
108 |
q->post_cos[i] = cos(i / 256.0 * M_PI); |
109 |
q->post_sin[i] = sin(i / 256.0 * M_PI); |
110 |
|
111 |
r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI); |
112 |
r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI); |
113 |
|
114 |
if (i & 0x1) |
115 |
{ |
116 |
q->pre_coef1[i] = (r1 + r2) * sqrt(2.0); |
117 |
q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0); |
118 |
} |
119 |
else
|
120 |
{ |
121 |
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0); |
122 |
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0); |
123 |
} |
124 |
|
125 |
q->last_fft_im[i] = 0;
|
126 |
} |
127 |
|
128 |
/* Generate a square root table */
|
129 |
|
130 |
for(i = 0; i < 30; i++) { |
131 |
q->sqrt_tab[i] = sqrt(i); |
132 |
} |
133 |
|
134 |
/* initialize the VLC tables */
|
135 |
for(i = 0; i < 4 ; i++) { |
136 |
for(j = 0; j < 4; j++) { |
137 |
init_vlc (&q->huffman_vlc[i][j], 9, imc_huffman_sizes[i],
|
138 |
imc_huffman_lens[i][j], 1, 1, |
139 |
imc_huffman_bits[i][j], 2, 2, 1); |
140 |
} |
141 |
} |
142 |
q->one_div_log2 = 1/log(2); |
143 |
|
144 |
ff_fft_init(&q->fft, 7, 1); |
145 |
dsputil_init(&q->dsp, avctx); |
146 |
return 0; |
147 |
} |
148 |
|
149 |
static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT, |
150 |
float* flcoeffs3, float* flcoeffs5) |
151 |
{ |
152 |
float workT1[BANDS];
|
153 |
float workT2[BANDS];
|
154 |
float workT3[BANDS];
|
155 |
float snr_limit = 1.e-30; |
156 |
float accum = 0.0; |
157 |
int i, cnt2;
|
158 |
|
159 |
for(i = 0; i < BANDS; i++) { |
160 |
flcoeffs5[i] = workT2[i] = 0.0; |
161 |
if (bandWidthT[i]){
|
162 |
workT1[i] = flcoeffs1[i] * flcoeffs1[i]; |
163 |
flcoeffs3[i] = 2.0 * flcoeffs2[i]; |
164 |
} else {
|
165 |
workT1[i] = 0.0; |
166 |
flcoeffs3[i] = -30000.0; |
167 |
} |
168 |
workT3[i] = bandWidthT[i] * workT1[i] * 0.01; |
169 |
if (workT3[i] <= snr_limit)
|
170 |
workT3[i] = 0.0; |
171 |
} |
172 |
|
173 |
for(i = 0; i < BANDS; i++) { |
174 |
for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
|
175 |
flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i]; |
176 |
workT2[cnt2-1] = workT2[cnt2-1] + workT3[i]; |
177 |
} |
178 |
|
179 |
for(i = 1; i < BANDS; i++) { |
180 |
accum = (workT2[i-1] + accum) * imc_weights1[i-1]; |
181 |
flcoeffs5[i] += accum; |
182 |
} |
183 |
|
184 |
for(i = 0; i < BANDS; i++) |
185 |
workT2[i] = 0.0; |
186 |
|
187 |
for(i = 0; i < BANDS; i++) { |
188 |
for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--) |
189 |
flcoeffs5[cnt2] += workT3[i]; |
190 |
workT2[cnt2+1] += workT3[i];
|
191 |
} |
192 |
|
193 |
accum = 0.0; |
194 |
|
195 |
for(i = BANDS-2; i >= 0; i--) { |
196 |
accum = (workT2[i+1] + accum) * imc_weights2[i];
|
197 |
flcoeffs5[i] += accum; |
198 |
//there is missing code here, but it seems to never be triggered
|
199 |
} |
200 |
} |
201 |
|
202 |
|
203 |
static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs) |
204 |
{ |
205 |
int i;
|
206 |
VLC *hufftab[4];
|
207 |
int start = 0; |
208 |
const uint8_t *cb_sel;
|
209 |
int s;
|
210 |
|
211 |
s = stream_format_code >> 1;
|
212 |
hufftab[0] = &q->huffman_vlc[s][0]; |
213 |
hufftab[1] = &q->huffman_vlc[s][1]; |
214 |
hufftab[2] = &q->huffman_vlc[s][2]; |
215 |
hufftab[3] = &q->huffman_vlc[s][3]; |
216 |
cb_sel = imc_cb_select[s]; |
217 |
|
218 |
if(stream_format_code & 4) |
219 |
start = 1;
|
220 |
if(start)
|
221 |
levlCoeffs[0] = get_bits(&q->gb, 7); |
222 |
for(i = start; i < BANDS; i++){
|
223 |
levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
|
224 |
if(levlCoeffs[i] == 17) |
225 |
levlCoeffs[i] += get_bits(&q->gb, 4);
|
226 |
} |
227 |
} |
228 |
|
229 |
static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1, |
230 |
float* flcoeffs2)
|
231 |
{ |
232 |
int i, level;
|
233 |
float tmp, tmp2;
|
234 |
//maybe some frequency division thingy
|
235 |
|
236 |
flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125 |
237 |
flcoeffs2[0] = log(flcoeffs1[0])/log(2); |
238 |
tmp = flcoeffs1[0];
|
239 |
tmp2 = flcoeffs2[0];
|
240 |
|
241 |
for(i = 1; i < BANDS; i++) { |
242 |
level = levlCoeffBuf[i]; |
243 |
if (level == 16) { |
244 |
flcoeffs1[i] = 1.0; |
245 |
flcoeffs2[i] = 0.0; |
246 |
} else {
|
247 |
if (level < 17) |
248 |
level -=7;
|
249 |
else if (level <= 24) |
250 |
level -=32;
|
251 |
else
|
252 |
level -=16;
|
253 |
|
254 |
tmp *= imc_exp_tab[15 + level];
|
255 |
tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25 |
256 |
flcoeffs1[i] = tmp; |
257 |
flcoeffs2[i] = tmp2; |
258 |
} |
259 |
} |
260 |
} |
261 |
|
262 |
|
263 |
static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1, |
264 |
float* flcoeffs2) {
|
265 |
int i;
|
266 |
//FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
|
267 |
// and flcoeffs2 old scale factors
|
268 |
// might be incomplete due to a missing table that is in the binary code
|
269 |
for(i = 0; i < BANDS; i++) { |
270 |
flcoeffs1[i] = 0;
|
271 |
if(levlCoeffBuf[i] < 16) { |
272 |
flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i]; |
273 |
flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25 |
274 |
} else {
|
275 |
flcoeffs1[i] = old_floor[i]; |
276 |
} |
277 |
} |
278 |
} |
279 |
|
280 |
/**
|
281 |
* Perform bit allocation depending on bits available
|
282 |
*/
|
283 |
static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) { |
284 |
int i, j;
|
285 |
const float limit = -1.e20; |
286 |
float highest = 0.0; |
287 |
int indx;
|
288 |
int t1 = 0; |
289 |
int t2 = 1; |
290 |
float summa = 0.0; |
291 |
int iacc = 0; |
292 |
int summer = 0; |
293 |
int rres, cwlen;
|
294 |
float lowest = 1.e10; |
295 |
int low_indx = 0; |
296 |
float workT[32]; |
297 |
int flg;
|
298 |
int found_indx = 0; |
299 |
|
300 |
for(i = 0; i < BANDS; i++) |
301 |
highest = FFMAX(highest, q->flcoeffs1[i]); |
302 |
|
303 |
for(i = 0; i < BANDS-1; i++) { |
304 |
q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
|
305 |
} |
306 |
q->flcoeffs4[BANDS - 1] = limit;
|
307 |
|
308 |
highest = highest * 0.25; |
309 |
|
310 |
for(i = 0; i < BANDS; i++) { |
311 |
indx = -1;
|
312 |
if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i]) |
313 |
indx = 0;
|
314 |
|
315 |
if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i]) |
316 |
indx = 1;
|
317 |
|
318 |
if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i]) |
319 |
indx = 2;
|
320 |
|
321 |
if (indx == -1) |
322 |
return -1; |
323 |
|
324 |
q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag]; |
325 |
} |
326 |
|
327 |
if (stream_format_code & 0x2) { |
328 |
q->flcoeffs4[0] = limit;
|
329 |
q->flcoeffs4[1] = limit;
|
330 |
q->flcoeffs4[2] = limit;
|
331 |
q->flcoeffs4[3] = limit;
|
332 |
} |
333 |
|
334 |
for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) { |
335 |
iacc += q->bandWidthT[i]; |
336 |
summa += q->bandWidthT[i] * q->flcoeffs4[i]; |
337 |
} |
338 |
q->bandWidthT[BANDS-1] = 0; |
339 |
summa = (summa * 0.5 - freebits) / iacc; |
340 |
|
341 |
|
342 |
for(i = 0; i < BANDS/2; i++) { |
343 |
rres = summer - freebits; |
344 |
if((rres >= -8) && (rres <= 8)) break; |
345 |
|
346 |
summer = 0;
|
347 |
iacc = 0;
|
348 |
|
349 |
for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) { |
350 |
cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6); |
351 |
|
352 |
q->bitsBandT[j] = cwlen; |
353 |
summer += q->bandWidthT[j] * cwlen; |
354 |
|
355 |
if (cwlen > 0) |
356 |
iacc += q->bandWidthT[j]; |
357 |
} |
358 |
|
359 |
flg = t2; |
360 |
t2 = 1;
|
361 |
if (freebits < summer)
|
362 |
t2 = -1;
|
363 |
if (i == 0) |
364 |
flg = t2; |
365 |
if(flg != t2)
|
366 |
t1++; |
367 |
|
368 |
summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa; |
369 |
} |
370 |
|
371 |
for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) { |
372 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
373 |
q->CWlengthT[j] = q->bitsBandT[i]; |
374 |
} |
375 |
|
376 |
if (freebits > summer) {
|
377 |
for(i = 0; i < BANDS; i++) { |
378 |
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); |
379 |
} |
380 |
|
381 |
highest = 0.0; |
382 |
|
383 |
do{
|
384 |
if (highest <= -1.e20) |
385 |
break;
|
386 |
|
387 |
found_indx = 0;
|
388 |
highest = -1.e20;
|
389 |
|
390 |
for(i = 0; i < BANDS; i++) { |
391 |
if (workT[i] > highest) {
|
392 |
highest = workT[i]; |
393 |
found_indx = i; |
394 |
} |
395 |
} |
396 |
|
397 |
if (highest > -1.e20) { |
398 |
workT[found_indx] -= 2.0; |
399 |
if (++(q->bitsBandT[found_indx]) == 6) |
400 |
workT[found_indx] = -1.e20;
|
401 |
|
402 |
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){ |
403 |
q->CWlengthT[j]++; |
404 |
summer++; |
405 |
} |
406 |
} |
407 |
}while (freebits > summer);
|
408 |
} |
409 |
if (freebits < summer) {
|
410 |
for(i = 0; i < BANDS; i++) { |
411 |
workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20; |
412 |
} |
413 |
if (stream_format_code & 0x2) { |
414 |
workT[0] = 1.e20; |
415 |
workT[1] = 1.e20; |
416 |
workT[2] = 1.e20; |
417 |
workT[3] = 1.e20; |
418 |
} |
419 |
while (freebits < summer){
|
420 |
lowest = 1.e10;
|
421 |
low_indx = 0;
|
422 |
for(i = 0; i < BANDS; i++) { |
423 |
if (workT[i] < lowest) {
|
424 |
lowest = workT[i]; |
425 |
low_indx = i; |
426 |
} |
427 |
} |
428 |
//if(lowest >= 1.e10) break;
|
429 |
workT[low_indx] = lowest + 2.0; |
430 |
|
431 |
if (!(--q->bitsBandT[low_indx]))
|
432 |
workT[low_indx] = 1.e20;
|
433 |
|
434 |
for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){ |
435 |
if(q->CWlengthT[j] > 0){ |
436 |
q->CWlengthT[j]--; |
437 |
summer--; |
438 |
} |
439 |
} |
440 |
} |
441 |
} |
442 |
return 0; |
443 |
} |
444 |
|
445 |
static void imc_get_skip_coeff(IMCContext* q) { |
446 |
int i, j;
|
447 |
|
448 |
memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits)); |
449 |
memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount)); |
450 |
for(i = 0; i < BANDS; i++) { |
451 |
if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
|
452 |
continue;
|
453 |
|
454 |
if (!q->skipFlagRaw[i]) {
|
455 |
q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
|
456 |
|
457 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
458 |
if ((q->skipFlags[j] = get_bits(&q->gb,1))) |
459 |
q->skipFlagCount[i]++; |
460 |
} |
461 |
} else {
|
462 |
for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) { |
463 |
if(!get_bits1(&q->gb)){//0 |
464 |
q->skipFlagBits[i]++; |
465 |
q->skipFlags[j]=1;
|
466 |
q->skipFlags[j+1]=1; |
467 |
q->skipFlagCount[i] += 2;
|
468 |
}else{
|
469 |
if(get_bits1(&q->gb)){//11 |
470 |
q->skipFlagBits[i] +=2;
|
471 |
q->skipFlags[j]=0;
|
472 |
q->skipFlags[j+1]=1; |
473 |
q->skipFlagCount[i]++; |
474 |
}else{
|
475 |
q->skipFlagBits[i] +=3;
|
476 |
q->skipFlags[j+1]=0; |
477 |
if(!get_bits1(&q->gb)){//100 |
478 |
q->skipFlags[j]=1;
|
479 |
q->skipFlagCount[i]++; |
480 |
}else{//101 |
481 |
q->skipFlags[j]=0;
|
482 |
} |
483 |
} |
484 |
} |
485 |
} |
486 |
|
487 |
if (j < band_tab[i+1]) { |
488 |
q->skipFlagBits[i]++; |
489 |
if ((q->skipFlags[j] = get_bits(&q->gb,1))) |
490 |
q->skipFlagCount[i]++; |
491 |
} |
492 |
} |
493 |
} |
494 |
} |
495 |
|
496 |
/**
|
497 |
* Increase highest' band coefficient sizes as some bits won't be used
|
498 |
*/
|
499 |
static void imc_adjust_bit_allocation (IMCContext* q, int summer) { |
500 |
float workT[32]; |
501 |
int corrected = 0; |
502 |
int i, j;
|
503 |
float highest = 0; |
504 |
int found_indx=0; |
505 |
|
506 |
for(i = 0; i < BANDS; i++) { |
507 |
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); |
508 |
} |
509 |
|
510 |
while (corrected < summer) {
|
511 |
if(highest <= -1.e20) |
512 |
break;
|
513 |
|
514 |
highest = -1.e20;
|
515 |
|
516 |
for(i = 0; i < BANDS; i++) { |
517 |
if (workT[i] > highest) {
|
518 |
highest = workT[i]; |
519 |
found_indx = i; |
520 |
} |
521 |
} |
522 |
|
523 |
if (highest > -1.e20) { |
524 |
workT[found_indx] -= 2.0; |
525 |
if (++(q->bitsBandT[found_indx]) == 6) |
526 |
workT[found_indx] = -1.e20;
|
527 |
|
528 |
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) { |
529 |
if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) { |
530 |
q->CWlengthT[j]++; |
531 |
corrected++; |
532 |
} |
533 |
} |
534 |
} |
535 |
} |
536 |
} |
537 |
|
538 |
static void imc_imdct256(IMCContext *q) { |
539 |
int i;
|
540 |
float re, im;
|
541 |
|
542 |
/* prerotation */
|
543 |
for(i=0; i < COEFFS/2; i++){ |
544 |
q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) - |
545 |
(q->pre_coef2[i] * q->CWdecoded[i*2]);
|
546 |
q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) - |
547 |
(q->pre_coef1[i] * q->CWdecoded[i*2]);
|
548 |
} |
549 |
|
550 |
/* FFT */
|
551 |
ff_fft_permute(&q->fft, q->samples); |
552 |
ff_fft_calc (&q->fft, q->samples); |
553 |
|
554 |
/* postrotation, window and reorder */
|
555 |
for(i = 0; i < COEFFS/2; i++){ |
556 |
re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]); |
557 |
im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]); |
558 |
q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re); |
559 |
q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re); |
560 |
q->last_fft_im[i] = im; |
561 |
} |
562 |
} |
563 |
|
564 |
static int inverse_quant_coeff (IMCContext* q, int stream_format_code) { |
565 |
int i, j;
|
566 |
int middle_value, cw_len, max_size;
|
567 |
const float* quantizer; |
568 |
|
569 |
for(i = 0; i < BANDS; i++) { |
570 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
571 |
q->CWdecoded[j] = 0;
|
572 |
cw_len = q->CWlengthT[j]; |
573 |
|
574 |
if (cw_len <= 0 || q->skipFlags[j]) |
575 |
continue;
|
576 |
|
577 |
max_size = 1 << cw_len;
|
578 |
middle_value = max_size >> 1;
|
579 |
|
580 |
if (q->codewords[j] >= max_size || q->codewords[j] < 0) |
581 |
return -1; |
582 |
|
583 |
if (cw_len >= 4){ |
584 |
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1]; |
585 |
if (q->codewords[j] >= middle_value)
|
586 |
q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
|
587 |
else
|
588 |
q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i]; |
589 |
}else{
|
590 |
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)]; |
591 |
if (q->codewords[j] >= middle_value)
|
592 |
q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
|
593 |
else
|
594 |
q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
|
595 |
} |
596 |
} |
597 |
} |
598 |
return 0; |
599 |
} |
600 |
|
601 |
|
602 |
static int imc_get_coeffs (IMCContext* q) { |
603 |
int i, j, cw_len, cw;
|
604 |
|
605 |
for(i = 0; i < BANDS; i++) { |
606 |
if(!q->sumLenArr[i]) continue; |
607 |
if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
|
608 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
609 |
cw_len = q->CWlengthT[j]; |
610 |
cw = 0;
|
611 |
|
612 |
if (get_bits_count(&q->gb) + cw_len > 512){ |
613 |
//av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
|
614 |
return -1; |
615 |
} |
616 |
|
617 |
if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
|
618 |
cw = get_bits(&q->gb, cw_len); |
619 |
|
620 |
q->codewords[j] = cw; |
621 |
} |
622 |
} |
623 |
} |
624 |
return 0; |
625 |
} |
626 |
|
627 |
static int imc_decode_frame(AVCodecContext * avctx, |
628 |
void *data, int *data_size, |
629 |
uint8_t * buf, int buf_size)
|
630 |
{ |
631 |
|
632 |
IMCContext *q = avctx->priv_data; |
633 |
|
634 |
int stream_format_code;
|
635 |
int imc_hdr, i, j;
|
636 |
int flag;
|
637 |
int bits, summer;
|
638 |
int counter, bitscount;
|
639 |
uint16_t *buf16 = (uint16_t *) buf; |
640 |
|
641 |
/* FIXME: input should not be modified */
|
642 |
for(i = 0; i < FFMIN(buf_size, avctx->block_align) / 2; i++) |
643 |
buf16[i] = bswap_16(buf16[i]); |
644 |
|
645 |
init_get_bits(&q->gb, buf, 512);
|
646 |
|
647 |
/* Check the frame header */
|
648 |
imc_hdr = get_bits(&q->gb, 9);
|
649 |
if (imc_hdr != IMC_FRAME_ID) {
|
650 |
av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
|
651 |
av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
|
652 |
return -1; |
653 |
} |
654 |
stream_format_code = get_bits(&q->gb, 3);
|
655 |
|
656 |
if(stream_format_code & 1){ |
657 |
av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
|
658 |
return -1; |
659 |
} |
660 |
|
661 |
// av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
|
662 |
|
663 |
if (stream_format_code & 0x04) |
664 |
q->decoder_reset = 1;
|
665 |
|
666 |
if(q->decoder_reset) {
|
667 |
memset(q->out_samples, 0, sizeof(q->out_samples)); |
668 |
for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0; |
669 |
for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0; |
670 |
q->decoder_reset = 0;
|
671 |
} |
672 |
|
673 |
flag = get_bits1(&q->gb); |
674 |
imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf); |
675 |
|
676 |
if (stream_format_code & 0x4) |
677 |
imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2); |
678 |
else
|
679 |
imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2); |
680 |
|
681 |
memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float)); |
682 |
|
683 |
counter = 0;
|
684 |
for (i=0 ; i<BANDS ; i++) { |
685 |
if (q->levlCoeffBuf[i] == 16) { |
686 |
q->bandWidthT[i] = 0;
|
687 |
counter++; |
688 |
} else
|
689 |
q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
|
690 |
} |
691 |
memset(q->bandFlagsBuf, 0, BANDS * sizeof(int)); |
692 |
for(i = 0; i < BANDS-1; i++) { |
693 |
if (q->bandWidthT[i])
|
694 |
q->bandFlagsBuf[i] = get_bits1(&q->gb); |
695 |
} |
696 |
|
697 |
imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5); |
698 |
|
699 |
bitscount = 0;
|
700 |
/* first 4 bands will be assigned 5 bits per coefficient */
|
701 |
if (stream_format_code & 0x2) { |
702 |
bitscount += 15;
|
703 |
|
704 |
q->bitsBandT[0] = 5; |
705 |
q->CWlengthT[0] = 5; |
706 |
q->CWlengthT[1] = 5; |
707 |
q->CWlengthT[2] = 5; |
708 |
for(i = 1; i < 4; i++){ |
709 |
bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5; |
710 |
q->bitsBandT[i] = bits; |
711 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
712 |
q->CWlengthT[j] = bits; |
713 |
bitscount += bits; |
714 |
} |
715 |
} |
716 |
} |
717 |
|
718 |
if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) { |
719 |
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
|
720 |
q->decoder_reset = 1;
|
721 |
return -1; |
722 |
} |
723 |
|
724 |
for(i = 0; i < BANDS; i++) { |
725 |
q->sumLenArr[i] = 0;
|
726 |
q->skipFlagRaw[i] = 0;
|
727 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
728 |
q->sumLenArr[i] += q->CWlengthT[j]; |
729 |
if (q->bandFlagsBuf[i])
|
730 |
if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0)) |
731 |
q->skipFlagRaw[i] = 1;
|
732 |
} |
733 |
|
734 |
imc_get_skip_coeff(q); |
735 |
|
736 |
for(i = 0; i < BANDS; i++) { |
737 |
q->flcoeffs6[i] = q->flcoeffs1[i]; |
738 |
/* band has flag set and at least one coded coefficient */
|
739 |
if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){ |
740 |
q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
|
741 |
q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
|
742 |
} |
743 |
} |
744 |
|
745 |
/* calculate bits left, bits needed and adjust bit allocation */
|
746 |
bits = summer = 0;
|
747 |
|
748 |
for(i = 0; i < BANDS; i++) { |
749 |
if (q->bandFlagsBuf[i]) {
|
750 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
751 |
if(q->skipFlags[j]) {
|
752 |
summer += q->CWlengthT[j]; |
753 |
q->CWlengthT[j] = 0;
|
754 |
} |
755 |
} |
756 |
bits += q->skipFlagBits[i]; |
757 |
summer -= q->skipFlagBits[i]; |
758 |
} |
759 |
} |
760 |
imc_adjust_bit_allocation(q, summer); |
761 |
|
762 |
for(i = 0; i < BANDS; i++) { |
763 |
q->sumLenArr[i] = 0;
|
764 |
|
765 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
766 |
if (!q->skipFlags[j])
|
767 |
q->sumLenArr[i] += q->CWlengthT[j]; |
768 |
} |
769 |
|
770 |
memset(q->codewords, 0, sizeof(q->codewords)); |
771 |
|
772 |
if(imc_get_coeffs(q) < 0) { |
773 |
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
|
774 |
q->decoder_reset = 1;
|
775 |
return 0; |
776 |
} |
777 |
|
778 |
if(inverse_quant_coeff(q, stream_format_code) < 0) { |
779 |
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
|
780 |
q->decoder_reset = 1;
|
781 |
return 0; |
782 |
} |
783 |
|
784 |
memset(q->skipFlags, 0, sizeof(q->skipFlags)); |
785 |
|
786 |
imc_imdct256(q); |
787 |
|
788 |
q->dsp.float_to_int16(data, q->out_samples, COEFFS); |
789 |
|
790 |
*data_size = COEFFS * sizeof(int16_t);
|
791 |
|
792 |
return avctx->block_align;
|
793 |
} |
794 |
|
795 |
|
796 |
static int imc_decode_close(AVCodecContext * avctx) |
797 |
{ |
798 |
IMCContext *q = avctx->priv_data; |
799 |
|
800 |
ff_fft_end(&q->fft); |
801 |
return 0; |
802 |
} |
803 |
|
804 |
|
805 |
AVCodec imc_decoder = { |
806 |
.name = "imc",
|
807 |
.type = CODEC_TYPE_AUDIO, |
808 |
.id = CODEC_ID_IMC, |
809 |
.priv_data_size = sizeof(IMCContext),
|
810 |
.init = imc_decode_init, |
811 |
.close = imc_decode_close, |
812 |
.decode = imc_decode_frame, |
813 |
}; |