Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ f6e2300f

History | View | Annotate | Download (56.2 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
37
 *
38
 * Features and limitations:
39
 *
40
 * Reference documents:
41
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
42
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
43
 * http://openquicktime.sourceforge.net/plugins.htm
44
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
45
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
46
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
47
 *
48
 * CD-ROM XA:
49
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
50
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
51
 * readstr http://www.geocities.co.jp/Playtown/2004/
52
 */
53

    
54
#define BLKSIZE 1024
55

    
56
/* step_table[] and index_table[] are from the ADPCM reference source */
57
/* This is the index table: */
58
static const int index_table[16] = {
59
    -1, -1, -1, -1, 2, 4, 6, 8,
60
    -1, -1, -1, -1, 2, 4, 6, 8,
61
};
62

    
63
/**
64
 * This is the step table. Note that many programs use slight deviations from
65
 * this table, but such deviations are negligible:
66
 */
67
static const int step_table[89] = {
68
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
69
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
70
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
71
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
72
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
73
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
74
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
75
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
76
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
77
};
78

    
79
/* These are for MS-ADPCM */
80
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
81
static const int AdaptationTable[] = {
82
        230, 230, 230, 230, 307, 409, 512, 614,
83
        768, 614, 512, 409, 307, 230, 230, 230
84
};
85

    
86
static const int AdaptCoeff1[] = {
87
        256, 512, 0, 192, 240, 460, 392
88
};
89

    
90
static const int AdaptCoeff2[] = {
91
        0, -256, 0, 64, 0, -208, -232
92
};
93

    
94
/* These are for CD-ROM XA ADPCM */
95
static const int xa_adpcm_table[5][2] = {
96
   {   0,   0 },
97
   {  60,   0 },
98
   { 115, -52 },
99
   {  98, -55 },
100
   { 122, -60 }
101
};
102

    
103
static const int ea_adpcm_table[] = {
104
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
105
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
106
};
107

    
108
static const int ct_adpcm_table[8] = {
109
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
110
    0x0133, 0x0199, 0x0200, 0x0266
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct ADPCMContext {
149
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
150
    ADPCMChannelStatus status[6];
151
} ADPCMContext;
152

    
153
/* XXX: implement encoding */
154

    
155
#ifdef CONFIG_ENCODERS
156
static int adpcm_encode_init(AVCodecContext *avctx)
157
{
158
    if (avctx->channels > 2)
159
        return -1; /* only stereo or mono =) */
160
    switch(avctx->codec->id) {
161
    case CODEC_ID_ADPCM_IMA_QT:
162
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
163
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
164
        return -1;
165
        break;
166
    case CODEC_ID_ADPCM_IMA_WAV:
167
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
168
                                                             /* and we have 4 bytes per channel overhead */
169
        avctx->block_align = BLKSIZE;
170
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
171
        break;
172
    case CODEC_ID_ADPCM_MS:
173
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
174
                                                             /* and we have 7 bytes per channel overhead */
175
        avctx->block_align = BLKSIZE;
176
        break;
177
    case CODEC_ID_ADPCM_YAMAHA:
178
        avctx->frame_size = BLKSIZE * avctx->channels;
179
        avctx->block_align = BLKSIZE;
180
        break;
181
    case CODEC_ID_ADPCM_SWF:
182
        if (avctx->sample_rate != 11025 &&
183
            avctx->sample_rate != 22050 &&
184
            avctx->sample_rate != 44100) {
185
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
186
            return -1;
187
        }
188
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
189
        break;
190
    default:
191
        return -1;
192
        break;
193
    }
194

    
195
    avctx->coded_frame= avcodec_alloc_frame();
196
    avctx->coded_frame->key_frame= 1;
197

    
198
    return 0;
199
}
200

    
201
static int adpcm_encode_close(AVCodecContext *avctx)
202
{
203
    av_freep(&avctx->coded_frame);
204

    
205
    return 0;
206
}
207

    
208

    
209
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
210
{
211
    int delta = sample - c->prev_sample;
212
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
213
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
214
    c->prev_sample = av_clip_int16(c->prev_sample);
215
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
216
    return nibble;
217
}
218

    
219
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
220
{
221
    int predictor, nibble, bias;
222

    
223
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
224

    
225
    nibble= sample - predictor;
226
    if(nibble>=0) bias= c->idelta/2;
227
    else          bias=-c->idelta/2;
228

    
229
    nibble= (nibble + bias) / c->idelta;
230
    nibble= av_clip(nibble, -8, 7)&0x0F;
231

    
232
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
233

    
234
    c->sample2 = c->sample1;
235
    c->sample1 = av_clip_int16(predictor);
236

    
237
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
238
    if (c->idelta < 16) c->idelta = 16;
239

    
240
    return nibble;
241
}
242

    
243
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
244
{
245
    int nibble, delta;
246

    
247
    if(!c->step) {
248
        c->predictor = 0;
249
        c->step = 127;
250
    }
251

    
252
    delta = sample - c->predictor;
253

    
254
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
255

    
256
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
257
    c->predictor = av_clip_int16(c->predictor);
258
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
259
    c->step = av_clip(c->step, 127, 24567);
260

    
261
    return nibble;
262
}
263

    
264
typedef struct TrellisPath {
265
    int nibble;
266
    int prev;
267
} TrellisPath;
268

    
269
typedef struct TrellisNode {
270
    uint32_t ssd;
271
    int path;
272
    int sample1;
273
    int sample2;
274
    int step;
275
} TrellisNode;
276

    
277
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
278
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
279
{
280
#define FREEZE_INTERVAL 128
281
    //FIXME 6% faster if frontier is a compile-time constant
282
    const int frontier = 1 << avctx->trellis;
283
    const int stride = avctx->channels;
284
    const int version = avctx->codec->id;
285
    const int max_paths = frontier*FREEZE_INTERVAL;
286
    TrellisPath paths[max_paths], *p;
287
    TrellisNode node_buf[2][frontier];
288
    TrellisNode *nodep_buf[2][frontier];
289
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
290
    TrellisNode **nodes_next = nodep_buf[1];
291
    int pathn = 0, froze = -1, i, j, k;
292

    
293
    assert(!(max_paths&(max_paths-1)));
294

    
295
    memset(nodep_buf, 0, sizeof(nodep_buf));
296
    nodes[0] = &node_buf[1][0];
297
    nodes[0]->ssd = 0;
298
    nodes[0]->path = 0;
299
    nodes[0]->step = c->step_index;
300
    nodes[0]->sample1 = c->sample1;
301
    nodes[0]->sample2 = c->sample2;
302
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_SWF))
303
        nodes[0]->sample1 = c->prev_sample;
304
    if(version == CODEC_ID_ADPCM_MS)
305
        nodes[0]->step = c->idelta;
306
    if(version == CODEC_ID_ADPCM_YAMAHA) {
307
        if(c->step == 0) {
308
            nodes[0]->step = 127;
309
            nodes[0]->sample1 = 0;
310
        } else {
311
            nodes[0]->step = c->step;
312
            nodes[0]->sample1 = c->predictor;
313
        }
314
    }
315

    
316
    for(i=0; i<n; i++) {
317
        TrellisNode *t = node_buf[i&1];
318
        TrellisNode **u;
319
        int sample = samples[i*stride];
320
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
321
        for(j=0; j<frontier && nodes[j]; j++) {
322
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
323
            const int range = (j < frontier/2) ? 1 : 0;
324
            const int step = nodes[j]->step;
325
            int nidx;
326
            if(version == CODEC_ID_ADPCM_MS) {
327
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
328
                const int div = (sample - predictor) / step;
329
                const int nmin = av_clip(div-range, -8, 6);
330
                const int nmax = av_clip(div+range, -7, 7);
331
                for(nidx=nmin; nidx<=nmax; nidx++) {
332
                    const int nibble = nidx & 0xf;
333
                    int dec_sample = predictor + nidx * step;
334
#define STORE_NODE(NAME, STEP_INDEX)\
335
                    int d;\
336
                    uint32_t ssd;\
337
                    dec_sample = av_clip_int16(dec_sample);\
338
                    d = sample - dec_sample;\
339
                    ssd = nodes[j]->ssd + d*d;\
340
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
341
                        continue;\
342
                    /* Collapse any two states with the same previous sample value. \
343
                     * One could also distinguish states by step and by 2nd to last
344
                     * sample, but the effects of that are negligible. */\
345
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
346
                        if(dec_sample == nodes_next[k]->sample1) {\
347
                            assert(ssd >= nodes_next[k]->ssd);\
348
                            goto next_##NAME;\
349
                        }\
350
                    }\
351
                    for(k=0; k<frontier; k++) {\
352
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
353
                            TrellisNode *u = nodes_next[frontier-1];\
354
                            if(!u) {\
355
                                assert(pathn < max_paths);\
356
                                u = t++;\
357
                                u->path = pathn++;\
358
                            }\
359
                            u->ssd = ssd;\
360
                            u->step = STEP_INDEX;\
361
                            u->sample2 = nodes[j]->sample1;\
362
                            u->sample1 = dec_sample;\
363
                            paths[u->path].nibble = nibble;\
364
                            paths[u->path].prev = nodes[j]->path;\
365
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
366
                            nodes_next[k] = u;\
367
                            break;\
368
                        }\
369
                    }\
370
                    next_##NAME:;
371
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
372
                }
373
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_SWF)) {
374
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
375
                const int predictor = nodes[j]->sample1;\
376
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
377
                int nmin = av_clip(div-range, -7, 6);\
378
                int nmax = av_clip(div+range, -6, 7);\
379
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
380
                if(nmax<0) nmax--;\
381
                for(nidx=nmin; nidx<=nmax; nidx++) {\
382
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
383
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
384
                    STORE_NODE(NAME, STEP_INDEX);\
385
                }
386
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
387
            } else { //CODEC_ID_ADPCM_YAMAHA
388
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
389
#undef LOOP_NODES
390
#undef STORE_NODE
391
            }
392
        }
393

    
394
        u = nodes;
395
        nodes = nodes_next;
396
        nodes_next = u;
397

    
398
        // prevent overflow
399
        if(nodes[0]->ssd > (1<<28)) {
400
            for(j=1; j<frontier && nodes[j]; j++)
401
                nodes[j]->ssd -= nodes[0]->ssd;
402
            nodes[0]->ssd = 0;
403
        }
404

    
405
        // merge old paths to save memory
406
        if(i == froze + FREEZE_INTERVAL) {
407
            p = &paths[nodes[0]->path];
408
            for(k=i; k>froze; k--) {
409
                dst[k] = p->nibble;
410
                p = &paths[p->prev];
411
            }
412
            froze = i;
413
            pathn = 0;
414
            // other nodes might use paths that don't coincide with the frozen one.
415
            // checking which nodes do so is too slow, so just kill them all.
416
            // this also slightly improves quality, but I don't know why.
417
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
418
        }
419
    }
420

    
421
    p = &paths[nodes[0]->path];
422
    for(i=n-1; i>froze; i--) {
423
        dst[i] = p->nibble;
424
        p = &paths[p->prev];
425
    }
426

    
427
    c->predictor = nodes[0]->sample1;
428
    c->sample1 = nodes[0]->sample1;
429
    c->sample2 = nodes[0]->sample2;
430
    c->step_index = nodes[0]->step;
431
    c->step = nodes[0]->step;
432
    c->idelta = nodes[0]->step;
433
}
434

    
435
static int adpcm_encode_frame(AVCodecContext *avctx,
436
                            unsigned char *frame, int buf_size, void *data)
437
{
438
    int n, i, st;
439
    short *samples;
440
    unsigned char *dst;
441
    ADPCMContext *c = avctx->priv_data;
442

    
443
    dst = frame;
444
    samples = (short *)data;
445
    st= avctx->channels == 2;
446
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
447

    
448
    switch(avctx->codec->id) {
449
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
450
        break;
451
    case CODEC_ID_ADPCM_IMA_WAV:
452
        n = avctx->frame_size / 8;
453
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
454
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
455
            bytestream_put_le16(&dst, c->status[0].prev_sample);
456
            *dst++ = (unsigned char)c->status[0].step_index;
457
            *dst++ = 0; /* unknown */
458
            samples++;
459
            if (avctx->channels == 2) {
460
                c->status[1].prev_sample = (signed short)samples[1];
461
/*                c->status[1].step_index = 0; */
462
                bytestream_put_le16(&dst, c->status[1].prev_sample);
463
                *dst++ = (unsigned char)c->status[1].step_index;
464
                *dst++ = 0;
465
                samples++;
466
            }
467

    
468
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
469
            if(avctx->trellis > 0) {
470
                uint8_t buf[2][n*8];
471
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
472
                if(avctx->channels == 2)
473
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
474
                for(i=0; i<n; i++) {
475
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
476
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
477
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
478
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
479
                    if (avctx->channels == 2) {
480
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
481
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
482
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
483
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
484
                    }
485
                }
486
            } else
487
            for (; n>0; n--) {
488
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
489
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
490
                dst++;
491
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
492
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
493
                dst++;
494
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
495
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
496
                dst++;
497
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
498
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
499
                dst++;
500
                /* right channel */
501
                if (avctx->channels == 2) {
502
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
503
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
504
                    dst++;
505
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
506
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
507
                    dst++;
508
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
509
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
510
                    dst++;
511
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
512
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
513
                    dst++;
514
                }
515
                samples += 8 * avctx->channels;
516
            }
517
        break;
518
    case CODEC_ID_ADPCM_SWF:
519
    {
520
        int i;
521
        PutBitContext pb;
522
        init_put_bits(&pb, dst, buf_size*8);
523

    
524
        n = avctx->frame_size-1;
525

    
526
        //Store AdpcmCodeSize
527
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
528

    
529
        //Init the encoder state
530
        for(i=0; i<avctx->channels; i++){
531
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
532
            put_bits(&pb, 16, samples[i] & 0xFFFF);
533
            put_bits(&pb, 6, c->status[i].step_index);
534
            c->status[i].prev_sample = (signed short)samples[i];
535
        }
536

    
537
        if(avctx->trellis > 0) {
538
            uint8_t buf[2][n];
539
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
540
            if (avctx->channels == 2)
541
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
542
            for(i=0; i<n; i++) {
543
                put_bits(&pb, 4, buf[0][i]);
544
                if (avctx->channels == 2)
545
                    put_bits(&pb, 4, buf[1][i]);
546
            }
547
        } else {
548
            for (i=1; i<avctx->frame_size; i++) {
549
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
550
                if (avctx->channels == 2)
551
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
552
            }
553
        }
554
        flush_put_bits(&pb);
555
        dst += put_bits_count(&pb)>>3;
556
        break;
557
    }
558
    case CODEC_ID_ADPCM_MS:
559
        for(i=0; i<avctx->channels; i++){
560
            int predictor=0;
561

    
562
            *dst++ = predictor;
563
            c->status[i].coeff1 = AdaptCoeff1[predictor];
564
            c->status[i].coeff2 = AdaptCoeff2[predictor];
565
        }
566
        for(i=0; i<avctx->channels; i++){
567
            if (c->status[i].idelta < 16)
568
                c->status[i].idelta = 16;
569

    
570
            bytestream_put_le16(&dst, c->status[i].idelta);
571
        }
572
        for(i=0; i<avctx->channels; i++){
573
            c->status[i].sample1= *samples++;
574

    
575
            bytestream_put_le16(&dst, c->status[i].sample1);
576
        }
577
        for(i=0; i<avctx->channels; i++){
578
            c->status[i].sample2= *samples++;
579

    
580
            bytestream_put_le16(&dst, c->status[i].sample2);
581
        }
582

    
583
        if(avctx->trellis > 0) {
584
            int n = avctx->block_align - 7*avctx->channels;
585
            uint8_t buf[2][n];
586
            if(avctx->channels == 1) {
587
                n *= 2;
588
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
589
                for(i=0; i<n; i+=2)
590
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
591
            } else {
592
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
593
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
594
                for(i=0; i<n; i++)
595
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
596
            }
597
        } else
598
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
599
            int nibble;
600
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
601
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
602
            *dst++ = nibble;
603
        }
604
        break;
605
    case CODEC_ID_ADPCM_YAMAHA:
606
        n = avctx->frame_size / 2;
607
        if(avctx->trellis > 0) {
608
            uint8_t buf[2][n*2];
609
            n *= 2;
610
            if(avctx->channels == 1) {
611
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
612
                for(i=0; i<n; i+=2)
613
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
614
            } else {
615
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
616
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
617
                for(i=0; i<n; i++)
618
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
619
            }
620
        } else
621
        for (; n>0; n--) {
622
            for(i = 0; i < avctx->channels; i++) {
623
                int nibble;
624
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
625
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
626
                *dst++ = nibble;
627
            }
628
            samples += 2 * avctx->channels;
629
        }
630
        break;
631
    default:
632
        return -1;
633
    }
634
    return dst - frame;
635
}
636
#endif //CONFIG_ENCODERS
637

    
638
static int adpcm_decode_init(AVCodecContext * avctx)
639
{
640
    ADPCMContext *c = avctx->priv_data;
641
    unsigned int max_channels = 2;
642

    
643
    switch(avctx->codec->id) {
644
    case CODEC_ID_ADPCM_EA_R1:
645
    case CODEC_ID_ADPCM_EA_R2:
646
    case CODEC_ID_ADPCM_EA_R3:
647
        max_channels = 6;
648
        break;
649
    }
650
    if(avctx->channels > max_channels){
651
        return -1;
652
    }
653

    
654
    switch(avctx->codec->id) {
655
    case CODEC_ID_ADPCM_CT:
656
        c->status[0].step = c->status[1].step = 511;
657
        break;
658
    case CODEC_ID_ADPCM_IMA_WS:
659
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
660
            c->status[0].predictor = AV_RL32(avctx->extradata);
661
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
662
        }
663
        break;
664
    default:
665
        break;
666
    }
667
    return 0;
668
}
669

    
670
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
671
{
672
    int step_index;
673
    int predictor;
674
    int sign, delta, diff, step;
675

    
676
    step = step_table[c->step_index];
677
    step_index = c->step_index + index_table[(unsigned)nibble];
678
    if (step_index < 0) step_index = 0;
679
    else if (step_index > 88) step_index = 88;
680

    
681
    sign = nibble & 8;
682
    delta = nibble & 7;
683
    /* perform direct multiplication instead of series of jumps proposed by
684
     * the reference ADPCM implementation since modern CPUs can do the mults
685
     * quickly enough */
686
    diff = ((2 * delta + 1) * step) >> shift;
687
    predictor = c->predictor;
688
    if (sign) predictor -= diff;
689
    else predictor += diff;
690

    
691
    c->predictor = av_clip_int16(predictor);
692
    c->step_index = step_index;
693

    
694
    return (short)c->predictor;
695
}
696

    
697
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
698
{
699
    int predictor;
700

    
701
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
702
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
703

    
704
    c->sample2 = c->sample1;
705
    c->sample1 = av_clip_int16(predictor);
706
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
707
    if (c->idelta < 16) c->idelta = 16;
708

    
709
    return c->sample1;
710
}
711

    
712
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
713
{
714
    int sign, delta, diff;
715
    int new_step;
716

    
717
    sign = nibble & 8;
718
    delta = nibble & 7;
719
    /* perform direct multiplication instead of series of jumps proposed by
720
     * the reference ADPCM implementation since modern CPUs can do the mults
721
     * quickly enough */
722
    diff = ((2 * delta + 1) * c->step) >> 3;
723
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
724
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
725
    c->predictor = av_clip_int16(c->predictor);
726
    /* calculate new step and clamp it to range 511..32767 */
727
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
728
    c->step = av_clip(new_step, 511, 32767);
729

    
730
    return (short)c->predictor;
731
}
732

    
733
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
734
{
735
    int sign, delta, diff;
736

    
737
    sign = nibble & (1<<(size-1));
738
    delta = nibble & ((1<<(size-1))-1);
739
    diff = delta << (7 + c->step + shift);
740

    
741
    /* clamp result */
742
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
743

    
744
    /* calculate new step */
745
    if (delta >= (2*size - 3) && c->step < 3)
746
        c->step++;
747
    else if (delta == 0 && c->step > 0)
748
        c->step--;
749

    
750
    return (short) c->predictor;
751
}
752

    
753
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
754
{
755
    if(!c->step) {
756
        c->predictor = 0;
757
        c->step = 127;
758
    }
759

    
760
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
761
    c->predictor = av_clip_int16(c->predictor);
762
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
763
    c->step = av_clip(c->step, 127, 24567);
764
    return c->predictor;
765
}
766

    
767
static void xa_decode(short *out, const unsigned char *in,
768
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
769
{
770
    int i, j;
771
    int shift,filter,f0,f1;
772
    int s_1,s_2;
773
    int d,s,t;
774

    
775
    for(i=0;i<4;i++) {
776

    
777
        shift  = 12 - (in[4+i*2] & 15);
778
        filter = in[4+i*2] >> 4;
779
        f0 = xa_adpcm_table[filter][0];
780
        f1 = xa_adpcm_table[filter][1];
781

    
782
        s_1 = left->sample1;
783
        s_2 = left->sample2;
784

    
785
        for(j=0;j<28;j++) {
786
            d = in[16+i+j*4];
787

    
788
            t = (signed char)(d<<4)>>4;
789
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
790
            s_2 = s_1;
791
            s_1 = av_clip_int16(s);
792
            *out = s_1;
793
            out += inc;
794
        }
795

    
796
        if (inc==2) { /* stereo */
797
            left->sample1 = s_1;
798
            left->sample2 = s_2;
799
            s_1 = right->sample1;
800
            s_2 = right->sample2;
801
            out = out + 1 - 28*2;
802
        }
803

    
804
        shift  = 12 - (in[5+i*2] & 15);
805
        filter = in[5+i*2] >> 4;
806

    
807
        f0 = xa_adpcm_table[filter][0];
808
        f1 = xa_adpcm_table[filter][1];
809

    
810
        for(j=0;j<28;j++) {
811
            d = in[16+i+j*4];
812

    
813
            t = (signed char)d >> 4;
814
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
815
            s_2 = s_1;
816
            s_1 = av_clip_int16(s);
817
            *out = s_1;
818
            out += inc;
819
        }
820

    
821
        if (inc==2) { /* stereo */
822
            right->sample1 = s_1;
823
            right->sample2 = s_2;
824
            out -= 1;
825
        } else {
826
            left->sample1 = s_1;
827
            left->sample2 = s_2;
828
        }
829
    }
830
}
831

    
832

    
833
/* DK3 ADPCM support macro */
834
#define DK3_GET_NEXT_NIBBLE() \
835
    if (decode_top_nibble_next) \
836
    { \
837
        nibble = (last_byte >> 4) & 0x0F; \
838
        decode_top_nibble_next = 0; \
839
    } \
840
    else \
841
    { \
842
        last_byte = *src++; \
843
        if (src >= buf + buf_size) break; \
844
        nibble = last_byte & 0x0F; \
845
        decode_top_nibble_next = 1; \
846
    }
847

    
848
static int adpcm_decode_frame(AVCodecContext *avctx,
849
                            void *data, int *data_size,
850
                            uint8_t *buf, int buf_size)
851
{
852
    ADPCMContext *c = avctx->priv_data;
853
    ADPCMChannelStatus *cs;
854
    int n, m, channel, i;
855
    int block_predictor[2];
856
    short *samples;
857
    short *samples_end;
858
    uint8_t *src;
859
    int st; /* stereo */
860

    
861
    /* DK3 ADPCM accounting variables */
862
    unsigned char last_byte = 0;
863
    unsigned char nibble;
864
    int decode_top_nibble_next = 0;
865
    int diff_channel;
866

    
867
    /* EA ADPCM state variables */
868
    uint32_t samples_in_chunk;
869
    int32_t previous_left_sample, previous_right_sample;
870
    int32_t current_left_sample, current_right_sample;
871
    int32_t next_left_sample, next_right_sample;
872
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
873
    uint8_t shift_left, shift_right;
874
    int count1, count2;
875

    
876
    if (!buf_size)
877
        return 0;
878

    
879
    //should protect all 4bit ADPCM variants
880
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
881
    //
882
    if(*data_size/4 < buf_size + 8)
883
        return -1;
884

    
885
    samples = data;
886
    samples_end= samples + *data_size/2;
887
    *data_size= 0;
888
    src = buf;
889

    
890
    st = avctx->channels == 2 ? 1 : 0;
891

    
892
    switch(avctx->codec->id) {
893
    case CODEC_ID_ADPCM_IMA_QT:
894
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
895
        channel = c->channel;
896
        cs = &(c->status[channel]);
897
        /* (pppppp) (piiiiiii) */
898

    
899
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
900
        cs->predictor = (*src++) << 8;
901
        cs->predictor |= (*src & 0x80);
902
        cs->predictor &= 0xFF80;
903

    
904
        /* sign extension */
905
        if(cs->predictor & 0x8000)
906
            cs->predictor -= 0x10000;
907

    
908
        cs->predictor = av_clip_int16(cs->predictor);
909

    
910
        cs->step_index = (*src++) & 0x7F;
911

    
912
        if (cs->step_index > 88){
913
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
914
            cs->step_index = 88;
915
        }
916

    
917
        cs->step = step_table[cs->step_index];
918

    
919
        if (st && channel)
920
            samples++;
921

    
922
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
923
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
924
            samples += avctx->channels;
925
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
926
            samples += avctx->channels;
927
            src ++;
928
        }
929

    
930
        if(st) { /* handle stereo interlacing */
931
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
932
            if(channel == 1) { /* wait for the other packet before outputing anything */
933
                return src - buf;
934
            }
935
        }
936
        break;
937
    case CODEC_ID_ADPCM_IMA_WAV:
938
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
939
            buf_size = avctx->block_align;
940

    
941
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
942

    
943
        for(i=0; i<avctx->channels; i++){
944
            cs = &(c->status[i]);
945
            cs->predictor = (int16_t)(src[0] + (src[1]<<8));
946
            src+=2;
947

    
948
        // XXX: is this correct ??: *samples++ = cs->predictor;
949

    
950
            cs->step_index = *src++;
951
            if (cs->step_index > 88){
952
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
953
                cs->step_index = 88;
954
            }
955
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
956
        }
957

    
958
        while(src < buf + buf_size){
959
            for(m=0; m<4; m++){
960
                for(i=0; i<=st; i++)
961
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
962
                for(i=0; i<=st; i++)
963
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
964
                src++;
965
            }
966
            src += 4*st;
967
        }
968
        break;
969
    case CODEC_ID_ADPCM_4XM:
970
        cs = &(c->status[0]);
971
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
972
        if(st){
973
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
974
        }
975
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
976
        if(st){
977
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
978
        }
979
        if (cs->step_index < 0) cs->step_index = 0;
980
        if (cs->step_index > 88) cs->step_index = 88;
981

    
982
        m= (buf_size - (src - buf))>>st;
983
        for(i=0; i<m; i++) {
984
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
985
            if (st)
986
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
987
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
988
            if (st)
989
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
990
        }
991

    
992
        src += m<<st;
993

    
994
        break;
995
    case CODEC_ID_ADPCM_MS:
996
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
997
            buf_size = avctx->block_align;
998
        n = buf_size - 7 * avctx->channels;
999
        if (n < 0)
1000
            return -1;
1001
        block_predictor[0] = av_clip(*src++, 0, 7);
1002
        block_predictor[1] = 0;
1003
        if (st)
1004
            block_predictor[1] = av_clip(*src++, 0, 7);
1005
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1006
        src+=2;
1007
        if (st){
1008
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1009
            src+=2;
1010
        }
1011
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1012
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1013
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1014
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1015

    
1016
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1017
        src+=2;
1018
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1019
        if (st) src+=2;
1020
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1021
        src+=2;
1022
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1023
        if (st) src+=2;
1024

    
1025
        *samples++ = c->status[0].sample1;
1026
        if (st) *samples++ = c->status[1].sample1;
1027
        *samples++ = c->status[0].sample2;
1028
        if (st) *samples++ = c->status[1].sample2;
1029
        for(;n>0;n--) {
1030
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1031
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1032
            src ++;
1033
        }
1034
        break;
1035
    case CODEC_ID_ADPCM_IMA_DK4:
1036
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1037
            buf_size = avctx->block_align;
1038

    
1039
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1040
        c->status[0].step_index = src[2];
1041
        src += 4;
1042
        *samples++ = c->status[0].predictor;
1043
        if (st) {
1044
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1045
            c->status[1].step_index = src[2];
1046
            src += 4;
1047
            *samples++ = c->status[1].predictor;
1048
        }
1049
        while (src < buf + buf_size) {
1050

    
1051
            /* take care of the top nibble (always left or mono channel) */
1052
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1053
                (src[0] >> 4) & 0x0F, 3);
1054

    
1055
            /* take care of the bottom nibble, which is right sample for
1056
             * stereo, or another mono sample */
1057
            if (st)
1058
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1059
                    src[0] & 0x0F, 3);
1060
            else
1061
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1062
                    src[0] & 0x0F, 3);
1063

    
1064
            src++;
1065
        }
1066
        break;
1067
    case CODEC_ID_ADPCM_IMA_DK3:
1068
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1069
            buf_size = avctx->block_align;
1070

    
1071
        if(buf_size + 16 > (samples_end - samples)*3/8)
1072
            return -1;
1073

    
1074
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1075
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1076
        c->status[0].step_index = src[14];
1077
        c->status[1].step_index = src[15];
1078
        /* sign extend the predictors */
1079
        src += 16;
1080
        diff_channel = c->status[1].predictor;
1081

    
1082
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1083
         * the buffer is consumed */
1084
        while (1) {
1085

    
1086
            /* for this algorithm, c->status[0] is the sum channel and
1087
             * c->status[1] is the diff channel */
1088

    
1089
            /* process the first predictor of the sum channel */
1090
            DK3_GET_NEXT_NIBBLE();
1091
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1092

    
1093
            /* process the diff channel predictor */
1094
            DK3_GET_NEXT_NIBBLE();
1095
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1096

    
1097
            /* process the first pair of stereo PCM samples */
1098
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1099
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1100
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1101

    
1102
            /* process the second predictor of the sum channel */
1103
            DK3_GET_NEXT_NIBBLE();
1104
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1105

    
1106
            /* process the second pair of stereo PCM samples */
1107
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1108
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1109
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1110
        }
1111
        break;
1112
    case CODEC_ID_ADPCM_IMA_WS:
1113
        /* no per-block initialization; just start decoding the data */
1114
        while (src < buf + buf_size) {
1115

    
1116
            if (st) {
1117
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1118
                    (src[0] >> 4) & 0x0F, 3);
1119
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1120
                    src[0] & 0x0F, 3);
1121
            } else {
1122
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1123
                    (src[0] >> 4) & 0x0F, 3);
1124
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1125
                    src[0] & 0x0F, 3);
1126
            }
1127

    
1128
            src++;
1129
        }
1130
        break;
1131
    case CODEC_ID_ADPCM_XA:
1132
        c->status[0].sample1 = c->status[0].sample2 =
1133
        c->status[1].sample1 = c->status[1].sample2 = 0;
1134
        while (buf_size >= 128) {
1135
            xa_decode(samples, src, &c->status[0], &c->status[1],
1136
                avctx->channels);
1137
            src += 128;
1138
            samples += 28 * 8;
1139
            buf_size -= 128;
1140
        }
1141
        break;
1142
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1143
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1144

    
1145
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1146
            src += buf_size - 4;
1147
            break;
1148
        }
1149

    
1150
        for (i=0; i<=st; i++)
1151
            c->status[i].step_index = bytestream_get_le32(&src);
1152
        for (i=0; i<=st; i++)
1153
            c->status[i].predictor  = bytestream_get_le32(&src);
1154

    
1155
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1156
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1157
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1158
        }
1159
        break;
1160
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1161
        for (; src < buf+buf_size; src++) {
1162
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1163
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1164
        }
1165
        break;
1166
    case CODEC_ID_ADPCM_EA:
1167
        samples_in_chunk = AV_RL32(src);
1168
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1169
            src += buf_size;
1170
            break;
1171
        }
1172
        src += 4;
1173
        current_left_sample = (int16_t)AV_RL16(src);
1174
        src += 2;
1175
        previous_left_sample = (int16_t)AV_RL16(src);
1176
        src += 2;
1177
        current_right_sample = (int16_t)AV_RL16(src);
1178
        src += 2;
1179
        previous_right_sample = (int16_t)AV_RL16(src);
1180
        src += 2;
1181

    
1182
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1183
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1184
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1185
            coeff1r = ea_adpcm_table[*src & 0x0F];
1186
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1187
            src++;
1188

    
1189
            shift_left = ((*src >> 4) & 0x0F) + 8;
1190
            shift_right = (*src & 0x0F) + 8;
1191
            src++;
1192

    
1193
            for (count2 = 0; count2 < 28; count2++) {
1194
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1195
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1196
                src++;
1197

    
1198
                next_left_sample = (next_left_sample +
1199
                    (current_left_sample * coeff1l) +
1200
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1201
                next_right_sample = (next_right_sample +
1202
                    (current_right_sample * coeff1r) +
1203
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1204

    
1205
                previous_left_sample = current_left_sample;
1206
                current_left_sample = av_clip_int16(next_left_sample);
1207
                previous_right_sample = current_right_sample;
1208
                current_right_sample = av_clip_int16(next_right_sample);
1209
                *samples++ = (unsigned short)current_left_sample;
1210
                *samples++ = (unsigned short)current_right_sample;
1211
            }
1212
        }
1213
        break;
1214
    case CODEC_ID_ADPCM_EA_R1:
1215
    case CODEC_ID_ADPCM_EA_R2:
1216
    case CODEC_ID_ADPCM_EA_R3: {
1217
        /* channel numbering
1218
           2chan: 0=fl, 1=fr
1219
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1220
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1221
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1222
        int32_t previous_sample, current_sample, next_sample;
1223
        int32_t coeff1, coeff2;
1224
        uint8_t shift;
1225
        unsigned int channel;
1226
        uint16_t *samplesC;
1227
        uint8_t *srcC;
1228

    
1229
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1230
                                       : bytestream_get_le32(&src)) / 28;
1231
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1232
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1233
            src += buf_size - 4;
1234
            break;
1235
        }
1236

    
1237
        for (channel=0; channel<avctx->channels; channel++) {
1238
            srcC = src + (big_endian ? bytestream_get_be32(&src)
1239
                                     : bytestream_get_le32(&src))
1240
                       + (avctx->channels-channel-1) * 4;
1241
            samplesC = samples + channel;
1242

    
1243
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1244
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1245
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1246
            } else {
1247
                current_sample  = c->status[channel].predictor;
1248
                previous_sample = c->status[channel].prev_sample;
1249
            }
1250

    
1251
            for (count1=0; count1<samples_in_chunk; count1++) {
1252
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1253
                    srcC++;
1254
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1255
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1256

    
1257
                    for (count2=0; count2<28; count2++) {
1258
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1259
                        samplesC += avctx->channels;
1260
                    }
1261
                } else {
1262
                    coeff1 = ea_adpcm_table[ (*srcC>>4) & 0x0F     ];
1263
                    coeff2 = ea_adpcm_table[((*srcC>>4) & 0x0F) + 4];
1264
                    shift = (*srcC++ & 0x0F) + 8;
1265

    
1266
                    for (count2=0; count2<28; count2++) {
1267
                        if (count2 & 1)
1268
                            next_sample = ((*srcC++ & 0x0F) << 28) >> shift;
1269
                        else
1270
                            next_sample = ((*srcC   & 0xF0) << 24) >> shift;
1271

    
1272
                        next_sample += (current_sample  * coeff1) +
1273
                                       (previous_sample * coeff2);
1274
                        next_sample = av_clip_int16(next_sample >> 8);
1275

    
1276
                        previous_sample = current_sample;
1277
                        current_sample  = next_sample;
1278
                        *samplesC = current_sample;
1279
                        samplesC += avctx->channels;
1280
                    }
1281
                }
1282
            }
1283

    
1284
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1285
                c->status[channel].predictor   = current_sample;
1286
                c->status[channel].prev_sample = previous_sample;
1287
            }
1288
        }
1289

    
1290
        src = src + buf_size - (4 + 4*avctx->channels);
1291
        samples += 28 * samples_in_chunk * avctx->channels;
1292
        break;
1293
    }
1294
    case CODEC_ID_ADPCM_IMA_AMV:
1295
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1296
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1297
        c->status[0].step_index = bytestream_get_le16(&src);
1298

    
1299
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1300
            src+=4;
1301

    
1302
        while (src < buf + buf_size) {
1303
            char hi, lo;
1304
            lo = *src & 0x0F;
1305
            hi = (*src >> 4) & 0x0F;
1306

    
1307
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1308
                FFSWAP(char, hi, lo);
1309

    
1310
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1311
                lo, 3);
1312
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1313
                hi, 3);
1314
            src++;
1315
        }
1316
        break;
1317
    case CODEC_ID_ADPCM_CT:
1318
        while (src < buf + buf_size) {
1319
            if (st) {
1320
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1321
                    (src[0] >> 4) & 0x0F);
1322
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1323
                    src[0] & 0x0F);
1324
            } else {
1325
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1326
                    (src[0] >> 4) & 0x0F);
1327
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1328
                    src[0] & 0x0F);
1329
            }
1330
            src++;
1331
        }
1332
        break;
1333
    case CODEC_ID_ADPCM_SBPRO_4:
1334
    case CODEC_ID_ADPCM_SBPRO_3:
1335
    case CODEC_ID_ADPCM_SBPRO_2:
1336
        if (!c->status[0].step_index) {
1337
            /* the first byte is a raw sample */
1338
            *samples++ = 128 * (*src++ - 0x80);
1339
            if (st)
1340
              *samples++ = 128 * (*src++ - 0x80);
1341
            c->status[0].step_index = 1;
1342
        }
1343
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1344
            while (src < buf + buf_size) {
1345
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1346
                    (src[0] >> 4) & 0x0F, 4, 0);
1347
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1348
                    src[0] & 0x0F, 4, 0);
1349
                src++;
1350
            }
1351
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1352
            while (src < buf + buf_size && samples + 2 < samples_end) {
1353
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1354
                    (src[0] >> 5) & 0x07, 3, 0);
1355
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1356
                    (src[0] >> 2) & 0x07, 3, 0);
1357
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1358
                    src[0] & 0x03, 2, 0);
1359
                src++;
1360
            }
1361
        } else {
1362
            while (src < buf + buf_size && samples + 3 < samples_end) {
1363
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1364
                    (src[0] >> 6) & 0x03, 2, 2);
1365
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1366
                    (src[0] >> 4) & 0x03, 2, 2);
1367
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1368
                    (src[0] >> 2) & 0x03, 2, 2);
1369
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1370
                    src[0] & 0x03, 2, 2);
1371
                src++;
1372
            }
1373
        }
1374
        break;
1375
    case CODEC_ID_ADPCM_SWF:
1376
    {
1377
        GetBitContext gb;
1378
        const int *table;
1379
        int k0, signmask, nb_bits, count;
1380
        int size = buf_size*8;
1381

    
1382
        init_get_bits(&gb, buf, size);
1383

    
1384
        //read bits & initial values
1385
        nb_bits = get_bits(&gb, 2)+2;
1386
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1387
        table = swf_index_tables[nb_bits-2];
1388
        k0 = 1 << (nb_bits-2);
1389
        signmask = 1 << (nb_bits-1);
1390

    
1391
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1392
            for (i = 0; i < avctx->channels; i++) {
1393
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1394
                c->status[i].step_index = get_bits(&gb, 6);
1395
            }
1396

    
1397
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1398
                int i;
1399

    
1400
                for (i = 0; i < avctx->channels; i++) {
1401
                    // similar to IMA adpcm
1402
                    int delta = get_bits(&gb, nb_bits);
1403
                    int step = step_table[c->status[i].step_index];
1404
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1405
                    int k = k0;
1406

    
1407
                    do {
1408
                        if (delta & k)
1409
                            vpdiff += step;
1410
                        step >>= 1;
1411
                        k >>= 1;
1412
                    } while(k);
1413
                    vpdiff += step;
1414

    
1415
                    if (delta & signmask)
1416
                        c->status[i].predictor -= vpdiff;
1417
                    else
1418
                        c->status[i].predictor += vpdiff;
1419

    
1420
                    c->status[i].step_index += table[delta & (~signmask)];
1421

    
1422
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1423
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1424

    
1425
                    *samples++ = c->status[i].predictor;
1426
                    if (samples >= samples_end) {
1427
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1428
                        return -1;
1429
                    }
1430
                }
1431
            }
1432
        }
1433
        src += buf_size;
1434
        break;
1435
    }
1436
    case CODEC_ID_ADPCM_YAMAHA:
1437
        while (src < buf + buf_size) {
1438
            if (st) {
1439
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1440
                        src[0] & 0x0F);
1441
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1442
                        (src[0] >> 4) & 0x0F);
1443
            } else {
1444
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1445
                        src[0] & 0x0F);
1446
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1447
                        (src[0] >> 4) & 0x0F);
1448
            }
1449
            src++;
1450
        }
1451
        break;
1452
    case CODEC_ID_ADPCM_THP:
1453
    {
1454
        int table[2][16];
1455
        unsigned int samplecnt;
1456
        int prev[2][2];
1457
        int ch;
1458

    
1459
        if (buf_size < 80) {
1460
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1461
            return -1;
1462
        }
1463

    
1464
        src+=4;
1465
        samplecnt = bytestream_get_be32(&src);
1466

    
1467
        for (i = 0; i < 32; i++)
1468
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1469

    
1470
        /* Initialize the previous sample.  */
1471
        for (i = 0; i < 4; i++)
1472
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1473

    
1474
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1475
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1476
            return -1;
1477
        }
1478

    
1479
        for (ch = 0; ch <= st; ch++) {
1480
            samples = (unsigned short *) data + ch;
1481

    
1482
            /* Read in every sample for this channel.  */
1483
            for (i = 0; i < samplecnt / 14; i++) {
1484
                int index = (*src >> 4) & 7;
1485
                unsigned int exp = 28 - (*src++ & 15);
1486
                int factor1 = table[ch][index * 2];
1487
                int factor2 = table[ch][index * 2 + 1];
1488

    
1489
                /* Decode 14 samples.  */
1490
                for (n = 0; n < 14; n++) {
1491
                    int32_t sampledat;
1492
                    if(n&1) sampledat=  *src++    <<28;
1493
                    else    sampledat= (*src&0xF0)<<24;
1494

    
1495
                    sampledat = ((prev[ch][0]*factor1
1496
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1497
                    *samples = av_clip_int16(sampledat);
1498
                    prev[ch][1] = prev[ch][0];
1499
                    prev[ch][0] = *samples++;
1500

    
1501
                    /* In case of stereo, skip one sample, this sample
1502
                       is for the other channel.  */
1503
                    samples += st;
1504
                }
1505
            }
1506
        }
1507

    
1508
        /* In the previous loop, in case stereo is used, samples is
1509
           increased exactly one time too often.  */
1510
        samples -= st;
1511
        break;
1512
    }
1513

    
1514
    default:
1515
        return -1;
1516
    }
1517
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1518
    return src - buf;
1519
}
1520

    
1521

    
1522

    
1523
#ifdef CONFIG_ENCODERS
1524
#define ADPCM_ENCODER(id,name)                  \
1525
AVCodec name ## _encoder = {                    \
1526
    #name,                                      \
1527
    CODEC_TYPE_AUDIO,                           \
1528
    id,                                         \
1529
    sizeof(ADPCMContext),                       \
1530
    adpcm_encode_init,                          \
1531
    adpcm_encode_frame,                         \
1532
    adpcm_encode_close,                         \
1533
    NULL,                                       \
1534
};
1535
#else
1536
#define ADPCM_ENCODER(id,name)
1537
#endif
1538

    
1539
#ifdef CONFIG_DECODERS
1540
#define ADPCM_DECODER(id,name)                  \
1541
AVCodec name ## _decoder = {                    \
1542
    #name,                                      \
1543
    CODEC_TYPE_AUDIO,                           \
1544
    id,                                         \
1545
    sizeof(ADPCMContext),                       \
1546
    adpcm_decode_init,                          \
1547
    NULL,                                       \
1548
    NULL,                                       \
1549
    adpcm_decode_frame,                         \
1550
};
1551
#else
1552
#define ADPCM_DECODER(id,name)
1553
#endif
1554

    
1555
#define ADPCM_CODEC(id, name)                   \
1556
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1557

    
1558
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1559
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct);
1560
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea);
1561
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1);
1562
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2);
1563
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3);
1564
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
1565
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1566
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1567
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs);
1568
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead);
1569
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1570
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1571
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1572
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1573
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1574
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1575
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1576
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1577
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1578
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp);
1579
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa);
1580
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1581

    
1582
#undef ADPCM_CODEC