ffmpeg / libavcodec / wmaprodec.c @ f7346719
History | View | Annotate | Download (62 KB)
1 |
/*
|
---|---|
2 |
* Wmapro compatible decoder
|
3 |
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
|
4 |
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file
|
25 |
* @brief wmapro decoder implementation
|
26 |
* Wmapro is an MDCT based codec comparable to wma standard or AAC.
|
27 |
* The decoding therefore consists of the following steps:
|
28 |
* - bitstream decoding
|
29 |
* - reconstruction of per-channel data
|
30 |
* - rescaling and inverse quantization
|
31 |
* - IMDCT
|
32 |
* - windowing and overlapp-add
|
33 |
*
|
34 |
* The compressed wmapro bitstream is split into individual packets.
|
35 |
* Every such packet contains one or more wma frames.
|
36 |
* The compressed frames may have a variable length and frames may
|
37 |
* cross packet boundaries.
|
38 |
* Common to all wmapro frames is the number of samples that are stored in
|
39 |
* a frame.
|
40 |
* The number of samples and a few other decode flags are stored
|
41 |
* as extradata that has to be passed to the decoder.
|
42 |
*
|
43 |
* The wmapro frames themselves are again split into a variable number of
|
44 |
* subframes. Every subframe contains the data for 2^N time domain samples
|
45 |
* where N varies between 7 and 12.
|
46 |
*
|
47 |
* Example wmapro bitstream (in samples):
|
48 |
*
|
49 |
* || packet 0 || packet 1 || packet 2 packets
|
50 |
* ---------------------------------------------------
|
51 |
* || frame 0 || frame 1 || frame 2 || frames
|
52 |
* ---------------------------------------------------
|
53 |
* || | | || | | | || || subframes of channel 0
|
54 |
* ---------------------------------------------------
|
55 |
* || | | || | | | || || subframes of channel 1
|
56 |
* ---------------------------------------------------
|
57 |
*
|
58 |
* The frame layouts for the individual channels of a wma frame does not need
|
59 |
* to be the same.
|
60 |
*
|
61 |
* However, if the offsets and lengths of several subframes of a frame are the
|
62 |
* same, the subframes of the channels can be grouped.
|
63 |
* Every group may then use special coding techniques like M/S stereo coding
|
64 |
* to improve the compression ratio. These channel transformations do not
|
65 |
* need to be applied to a whole subframe. Instead, they can also work on
|
66 |
* individual scale factor bands (see below).
|
67 |
* The coefficients that carry the audio signal in the frequency domain
|
68 |
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
|
69 |
* In addition to that, the encoder can switch to a runlevel coding scheme
|
70 |
* by transmitting subframe_length / 128 zero coefficients.
|
71 |
*
|
72 |
* Before the audio signal can be converted to the time domain, the
|
73 |
* coefficients have to be rescaled and inverse quantized.
|
74 |
* A subframe is therefore split into several scale factor bands that get
|
75 |
* scaled individually.
|
76 |
* Scale factors are submitted for every frame but they might be shared
|
77 |
* between the subframes of a channel. Scale factors are initially DPCM-coded.
|
78 |
* Once scale factors are shared, the differences are transmitted as runlevel
|
79 |
* codes.
|
80 |
* Every subframe length and offset combination in the frame layout shares a
|
81 |
* common quantization factor that can be adjusted for every channel by a
|
82 |
* modifier.
|
83 |
* After the inverse quantization, the coefficients get processed by an IMDCT.
|
84 |
* The resulting values are then windowed with a sine window and the first half
|
85 |
* of the values are added to the second half of the output from the previous
|
86 |
* subframe in order to reconstruct the output samples.
|
87 |
*/
|
88 |
|
89 |
#include "avcodec.h" |
90 |
#include "internal.h" |
91 |
#include "get_bits.h" |
92 |
#include "put_bits.h" |
93 |
#include "wmaprodata.h" |
94 |
#include "dsputil.h" |
95 |
#include "wma.h" |
96 |
|
97 |
/** current decoder limitations */
|
98 |
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels |
99 |
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
100 |
#define MAX_BANDS 29 ///< max number of scale factor bands |
101 |
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
102 |
|
103 |
#define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size |
104 |
#define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size |
105 |
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size |
106 |
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes |
107 |
|
108 |
|
109 |
#define VLCBITS 9 |
110 |
#define SCALEVLCBITS 8 |
111 |
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
112 |
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
113 |
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
114 |
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
115 |
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
116 |
|
117 |
static VLC sf_vlc; ///< scale factor DPCM vlc |
118 |
static VLC sf_rl_vlc; ///< scale factor run length vlc |
119 |
static VLC vec4_vlc; ///< 4 coefficients per symbol |
120 |
static VLC vec2_vlc; ///< 2 coefficients per symbol |
121 |
static VLC vec1_vlc; ///< 1 coefficient per symbol |
122 |
static VLC coef_vlc[2]; ///< coefficient run length vlc codes |
123 |
static float sin64[33]; ///< sinus table for decorrelation |
124 |
|
125 |
/**
|
126 |
* @brief frame specific decoder context for a single channel
|
127 |
*/
|
128 |
typedef struct { |
129 |
int16_t prev_block_len; ///< length of the previous block
|
130 |
uint8_t transmit_coefs; |
131 |
uint8_t num_subframes; |
132 |
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
|
133 |
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
|
134 |
uint8_t cur_subframe; ///< current subframe number
|
135 |
uint16_t decoded_samples; ///< number of already processed samples
|
136 |
uint8_t grouped; ///< channel is part of a group
|
137 |
int quant_step; ///< quantization step for the current subframe |
138 |
int8_t reuse_sf; ///< share scale factors between subframes
|
139 |
int8_t scale_factor_step; ///< scaling step for the current subframe
|
140 |
int max_scale_factor; ///< maximum scale factor for the current subframe |
141 |
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
142 |
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
|
143 |
int* scale_factors; ///< pointer to the scale factor values used for decoding |
144 |
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
|
145 |
float* coeffs; ///< pointer to the subframe decode buffer |
146 |
DECLARE_ALIGNED(16, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer |
147 |
} WMAProChannelCtx; |
148 |
|
149 |
/**
|
150 |
* @brief channel group for channel transformations
|
151 |
*/
|
152 |
typedef struct { |
153 |
uint8_t num_channels; ///< number of channels in the group
|
154 |
int8_t transform; ///< transform on / off
|
155 |
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
|
156 |
float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
|
157 |
float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients |
158 |
} WMAProChannelGrp; |
159 |
|
160 |
/**
|
161 |
* @brief main decoder context
|
162 |
*/
|
163 |
typedef struct WMAProDecodeCtx { |
164 |
/* generic decoder variables */
|
165 |
AVCodecContext* avctx; ///< codec context for av_log
|
166 |
DSPContext dsp; ///< accelerated DSP functions
|
167 |
uint8_t frame_data[MAX_FRAMESIZE + |
168 |
FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
|
169 |
PutBitContext pb; ///< context for filling the frame_data buffer
|
170 |
FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
|
171 |
DECLARE_ALIGNED(16, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer |
172 |
float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes |
173 |
|
174 |
/* frame size dependent frame information (set during initialization) */
|
175 |
uint32_t decode_flags; ///< used compression features
|
176 |
uint8_t len_prefix; ///< frame is prefixed with its length
|
177 |
uint8_t dynamic_range_compression; ///< frame contains DRC data
|
178 |
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
|
179 |
uint16_t samples_per_frame; ///< number of samples to output
|
180 |
uint16_t log2_frame_size; |
181 |
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
|
182 |
int8_t lfe_channel; ///< lfe channel index
|
183 |
uint8_t max_num_subframes; |
184 |
uint8_t subframe_len_bits; ///< number of bits used for the subframe length
|
185 |
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
|
186 |
uint16_t min_samples_per_subframe; |
187 |
int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
|
188 |
int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
|
189 |
int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
|
190 |
int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
|
191 |
|
192 |
/* packet decode state */
|
193 |
GetBitContext pgb; ///< bitstream reader context for the packet
|
194 |
int next_packet_start; ///< start offset of the next wma packet in the demuxer packet |
195 |
uint8_t packet_offset; ///< frame offset in the packet
|
196 |
uint8_t packet_sequence_number; ///< current packet number
|
197 |
int num_saved_bits; ///< saved number of bits |
198 |
int frame_offset; ///< frame offset in the bit reservoir |
199 |
int subframe_offset; ///< subframe offset in the bit reservoir |
200 |
uint8_t packet_loss; ///< set in case of bitstream error
|
201 |
uint8_t packet_done; ///< set when a packet is fully decoded
|
202 |
|
203 |
/* frame decode state */
|
204 |
uint32_t frame_num; ///< current frame number (not used for decoding)
|
205 |
GetBitContext gb; ///< bitstream reader context
|
206 |
int buf_bit_size; ///< buffer size in bits |
207 |
float* samples; ///< current samplebuffer pointer |
208 |
float* samples_end; ///< maximum samplebuffer pointer |
209 |
uint8_t drc_gain; ///< gain for the DRC tool
|
210 |
int8_t skip_frame; ///< skip output step
|
211 |
int8_t parsed_all_subframes; ///< all subframes decoded?
|
212 |
|
213 |
/* subframe/block decode state */
|
214 |
int16_t subframe_len; ///< current subframe length
|
215 |
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
|
216 |
int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; |
217 |
int8_t num_bands; ///< number of scale factor bands
|
218 |
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
|
219 |
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
|
220 |
int8_t esc_len; ///< length of escaped coefficients
|
221 |
|
222 |
uint8_t num_chgroups; ///< number of channel groups
|
223 |
WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
|
224 |
|
225 |
WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
|
226 |
} WMAProDecodeCtx; |
227 |
|
228 |
|
229 |
/**
|
230 |
*@brief helper function to print the most important members of the context
|
231 |
*@param s context
|
232 |
*/
|
233 |
static void av_cold dump_context(WMAProDecodeCtx *s) |
234 |
{ |
235 |
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
236 |
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); |
237 |
|
238 |
PRINT("ed sample bit depth", s->bits_per_sample);
|
239 |
PRINT_HEX("ed decode flags", s->decode_flags);
|
240 |
PRINT("samples per frame", s->samples_per_frame);
|
241 |
PRINT("log2 frame size", s->log2_frame_size);
|
242 |
PRINT("max num subframes", s->max_num_subframes);
|
243 |
PRINT("len prefix", s->len_prefix);
|
244 |
PRINT("num channels", s->num_channels);
|
245 |
} |
246 |
|
247 |
/**
|
248 |
*@brief Uninitialize the decoder and free all resources.
|
249 |
*@param avctx codec context
|
250 |
*@return 0 on success, < 0 otherwise
|
251 |
*/
|
252 |
static av_cold int decode_end(AVCodecContext *avctx) |
253 |
{ |
254 |
WMAProDecodeCtx *s = avctx->priv_data; |
255 |
int i;
|
256 |
|
257 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
258 |
ff_mdct_end(&s->mdct_ctx[i]); |
259 |
|
260 |
return 0; |
261 |
} |
262 |
|
263 |
/**
|
264 |
*@brief Initialize the decoder.
|
265 |
*@param avctx codec context
|
266 |
*@return 0 on success, -1 otherwise
|
267 |
*/
|
268 |
static av_cold int decode_init(AVCodecContext *avctx) |
269 |
{ |
270 |
WMAProDecodeCtx *s = avctx->priv_data; |
271 |
uint8_t *edata_ptr = avctx->extradata; |
272 |
unsigned int channel_mask; |
273 |
int i;
|
274 |
int log2_max_num_subframes;
|
275 |
int num_possible_block_sizes;
|
276 |
|
277 |
s->avctx = avctx; |
278 |
dsputil_init(&s->dsp, avctx); |
279 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
280 |
|
281 |
avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
282 |
|
283 |
if (avctx->extradata_size >= 18) { |
284 |
s->decode_flags = AV_RL16(edata_ptr+14);
|
285 |
channel_mask = AV_RL32(edata_ptr+2);
|
286 |
s->bits_per_sample = AV_RL16(edata_ptr); |
287 |
/** dump the extradata */
|
288 |
for (i = 0; i < avctx->extradata_size; i++) |
289 |
dprintf(avctx, "[%x] ", avctx->extradata[i]);
|
290 |
dprintf(avctx, "\n");
|
291 |
|
292 |
} else {
|
293 |
av_log_ask_for_sample(avctx, "Unknown extradata size\n");
|
294 |
return AVERROR_INVALIDDATA;
|
295 |
} |
296 |
|
297 |
/** generic init */
|
298 |
s->log2_frame_size = av_log2(avctx->block_align) + 4;
|
299 |
|
300 |
/** frame info */
|
301 |
s->skip_frame = 1; /* skip first frame */ |
302 |
s->packet_loss = 1;
|
303 |
s->len_prefix = (s->decode_flags & 0x40);
|
304 |
|
305 |
/** get frame len */
|
306 |
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
|
307 |
3, s->decode_flags);
|
308 |
|
309 |
/** init previous block len */
|
310 |
for (i = 0; i < avctx->channels; i++) |
311 |
s->channel[i].prev_block_len = s->samples_per_frame; |
312 |
|
313 |
/** subframe info */
|
314 |
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
315 |
s->max_num_subframes = 1 << log2_max_num_subframes;
|
316 |
if (s->max_num_subframes == 16 || s->max_num_subframes == 4) |
317 |
s->max_subframe_len_bit = 1;
|
318 |
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
|
319 |
|
320 |
num_possible_block_sizes = log2_max_num_subframes + 1;
|
321 |
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
322 |
s->dynamic_range_compression = (s->decode_flags & 0x80);
|
323 |
|
324 |
if (s->max_num_subframes > MAX_SUBFRAMES) {
|
325 |
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
|
326 |
s->max_num_subframes); |
327 |
return AVERROR_INVALIDDATA;
|
328 |
} |
329 |
|
330 |
s->num_channels = avctx->channels; |
331 |
|
332 |
/** extract lfe channel position */
|
333 |
s->lfe_channel = -1;
|
334 |
|
335 |
if (channel_mask & 8) { |
336 |
unsigned int mask; |
337 |
for (mask = 1; mask < 16; mask <<= 1) { |
338 |
if (channel_mask & mask)
|
339 |
++s->lfe_channel; |
340 |
} |
341 |
} |
342 |
|
343 |
if (s->num_channels < 0) { |
344 |
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels);
|
345 |
return AVERROR_INVALIDDATA;
|
346 |
} else if (s->num_channels > WMAPRO_MAX_CHANNELS) { |
347 |
av_log_ask_for_sample(avctx, "unsupported number of channels\n");
|
348 |
return AVERROR_PATCHWELCOME;
|
349 |
} |
350 |
|
351 |
INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, |
352 |
scale_huffbits, 1, 1, |
353 |
scale_huffcodes, 2, 2, 616); |
354 |
|
355 |
INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, |
356 |
scale_rl_huffbits, 1, 1, |
357 |
scale_rl_huffcodes, 4, 4, 1406); |
358 |
|
359 |
INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
|
360 |
coef0_huffbits, 1, 1, |
361 |
coef0_huffcodes, 4, 4, 2108); |
362 |
|
363 |
INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
|
364 |
coef1_huffbits, 1, 1, |
365 |
coef1_huffcodes, 4, 4, 3912); |
366 |
|
367 |
INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, |
368 |
vec4_huffbits, 1, 1, |
369 |
vec4_huffcodes, 2, 2, 604); |
370 |
|
371 |
INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, |
372 |
vec2_huffbits, 1, 1, |
373 |
vec2_huffcodes, 2, 2, 562); |
374 |
|
375 |
INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, |
376 |
vec1_huffbits, 1, 1, |
377 |
vec1_huffcodes, 2, 2, 562); |
378 |
|
379 |
/** calculate number of scale factor bands and their offsets
|
380 |
for every possible block size */
|
381 |
for (i = 0; i < num_possible_block_sizes; i++) { |
382 |
int subframe_len = s->samples_per_frame >> i;
|
383 |
int x;
|
384 |
int band = 1; |
385 |
|
386 |
s->sfb_offsets[i][0] = 0; |
387 |
|
388 |
for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { |
389 |
int offset = (subframe_len * 2 * critical_freq[x]) |
390 |
/ s->avctx->sample_rate + 2;
|
391 |
offset &= ~3;
|
392 |
if (offset > s->sfb_offsets[i][band - 1]) |
393 |
s->sfb_offsets[i][band++] = offset; |
394 |
} |
395 |
s->sfb_offsets[i][band - 1] = subframe_len;
|
396 |
s->num_sfb[i] = band - 1;
|
397 |
} |
398 |
|
399 |
|
400 |
/** Scale factors can be shared between blocks of different size
|
401 |
as every block has a different scale factor band layout.
|
402 |
The matrix sf_offsets is needed to find the correct scale factor.
|
403 |
*/
|
404 |
|
405 |
for (i = 0; i < num_possible_block_sizes; i++) { |
406 |
int b;
|
407 |
for (b = 0; b < s->num_sfb[i]; b++) { |
408 |
int x;
|
409 |
int offset = ((s->sfb_offsets[i][b]
|
410 |
+ s->sfb_offsets[i][b + 1] - 1) << i) >> 1; |
411 |
for (x = 0; x < num_possible_block_sizes; x++) { |
412 |
int v = 0; |
413 |
while (s->sfb_offsets[x][v + 1] << x < offset) |
414 |
++v; |
415 |
s->sf_offsets[i][x][b] = v; |
416 |
} |
417 |
} |
418 |
} |
419 |
|
420 |
/** init MDCT, FIXME: only init needed sizes */
|
421 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
422 |
ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1, |
423 |
1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1)) |
424 |
/ (1 << (s->bits_per_sample - 1))); |
425 |
|
426 |
/** init MDCT windows: simple sinus window */
|
427 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { |
428 |
const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; |
429 |
ff_init_ff_sine_windows(win_idx); |
430 |
s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
|
431 |
} |
432 |
|
433 |
/** calculate subwoofer cutoff values */
|
434 |
for (i = 0; i < num_possible_block_sizes; i++) { |
435 |
int block_size = s->samples_per_frame >> i;
|
436 |
int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1) |
437 |
/ s->avctx->sample_rate; |
438 |
s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
|
439 |
} |
440 |
|
441 |
/** calculate sine values for the decorrelation matrix */
|
442 |
for (i = 0; i < 33; i++) |
443 |
sin64[i] = sin(i*M_PI / 64.0); |
444 |
|
445 |
if (avctx->debug & FF_DEBUG_BITSTREAM)
|
446 |
dump_context(s); |
447 |
|
448 |
avctx->channel_layout = channel_mask; |
449 |
return 0; |
450 |
} |
451 |
|
452 |
/**
|
453 |
*@brief Decode the subframe length.
|
454 |
*@param s context
|
455 |
*@param offset sample offset in the frame
|
456 |
*@return decoded subframe length on success, < 0 in case of an error
|
457 |
*/
|
458 |
static int decode_subframe_length(WMAProDecodeCtx *s, int offset) |
459 |
{ |
460 |
int frame_len_shift = 0; |
461 |
int subframe_len;
|
462 |
|
463 |
/** no need to read from the bitstream when only one length is possible */
|
464 |
if (offset == s->samples_per_frame - s->min_samples_per_subframe)
|
465 |
return s->min_samples_per_subframe;
|
466 |
|
467 |
/** 1 bit indicates if the subframe is of maximum length */
|
468 |
if (s->max_subframe_len_bit) {
|
469 |
if (get_bits1(&s->gb))
|
470 |
frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); |
471 |
} else
|
472 |
frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); |
473 |
|
474 |
subframe_len = s->samples_per_frame >> frame_len_shift; |
475 |
|
476 |
/** sanity check the length */
|
477 |
if (subframe_len < s->min_samples_per_subframe ||
|
478 |
subframe_len > s->samples_per_frame) { |
479 |
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
|
480 |
subframe_len); |
481 |
return AVERROR_INVALIDDATA;
|
482 |
} |
483 |
return subframe_len;
|
484 |
} |
485 |
|
486 |
/**
|
487 |
*@brief Decode how the data in the frame is split into subframes.
|
488 |
* Every WMA frame contains the encoded data for a fixed number of
|
489 |
* samples per channel. The data for every channel might be split
|
490 |
* into several subframes. This function will reconstruct the list of
|
491 |
* subframes for every channel.
|
492 |
*
|
493 |
* If the subframes are not evenly split, the algorithm estimates the
|
494 |
* channels with the lowest number of total samples.
|
495 |
* Afterwards, for each of these channels a bit is read from the
|
496 |
* bitstream that indicates if the channel contains a subframe with the
|
497 |
* next subframe size that is going to be read from the bitstream or not.
|
498 |
* If a channel contains such a subframe, the subframe size gets added to
|
499 |
* the channel's subframe list.
|
500 |
* The algorithm repeats these steps until the frame is properly divided
|
501 |
* between the individual channels.
|
502 |
*
|
503 |
*@param s context
|
504 |
*@return 0 on success, < 0 in case of an error
|
505 |
*/
|
506 |
static int decode_tilehdr(WMAProDecodeCtx *s) |
507 |
{ |
508 |
uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /**< sum of samples for all currently known subframes of a channel */
|
509 |
uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */
|
510 |
int channels_for_cur_subframe = s->num_channels; /**< number of channels that contain the current subframe */ |
511 |
int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */ |
512 |
int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */ |
513 |
int c;
|
514 |
|
515 |
/* Should never consume more than 3073 bits (256 iterations for the
|
516 |
* while loop when always the minimum amount of 128 samples is substracted
|
517 |
* from missing samples in the 8 channel case).
|
518 |
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
|
519 |
*/
|
520 |
|
521 |
/** reset tiling information */
|
522 |
for (c = 0; c < s->num_channels; c++) |
523 |
s->channel[c].num_subframes = 0;
|
524 |
|
525 |
memset(num_samples, 0, sizeof(num_samples)); |
526 |
|
527 |
if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
528 |
fixed_channel_layout = 1;
|
529 |
|
530 |
/** loop until the frame data is split between the subframes */
|
531 |
do {
|
532 |
int subframe_len;
|
533 |
|
534 |
/** check which channels contain the subframe */
|
535 |
for (c = 0; c < s->num_channels; c++) { |
536 |
if (num_samples[c] == min_channel_len) {
|
537 |
if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
538 |
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) |
539 |
contains_subframe[c] = 1;
|
540 |
else
|
541 |
contains_subframe[c] = get_bits1(&s->gb); |
542 |
} else
|
543 |
contains_subframe[c] = 0;
|
544 |
} |
545 |
|
546 |
/** get subframe length, subframe_len == 0 is not allowed */
|
547 |
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
548 |
return AVERROR_INVALIDDATA;
|
549 |
|
550 |
/** add subframes to the individual channels and find new min_channel_len */
|
551 |
min_channel_len += subframe_len; |
552 |
for (c = 0; c < s->num_channels; c++) { |
553 |
WMAProChannelCtx* chan = &s->channel[c]; |
554 |
|
555 |
if (contains_subframe[c]) {
|
556 |
if (chan->num_subframes >= MAX_SUBFRAMES) {
|
557 |
av_log(s->avctx, AV_LOG_ERROR, |
558 |
"broken frame: num subframes > 31\n");
|
559 |
return AVERROR_INVALIDDATA;
|
560 |
} |
561 |
chan->subframe_len[chan->num_subframes] = subframe_len; |
562 |
num_samples[c] += subframe_len; |
563 |
++chan->num_subframes; |
564 |
if (num_samples[c] > s->samples_per_frame) {
|
565 |
av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
|
566 |
"channel len > samples_per_frame\n");
|
567 |
return AVERROR_INVALIDDATA;
|
568 |
} |
569 |
} else if (num_samples[c] <= min_channel_len) { |
570 |
if (num_samples[c] < min_channel_len) {
|
571 |
channels_for_cur_subframe = 0;
|
572 |
min_channel_len = num_samples[c]; |
573 |
} |
574 |
++channels_for_cur_subframe; |
575 |
} |
576 |
} |
577 |
} while (min_channel_len < s->samples_per_frame);
|
578 |
|
579 |
for (c = 0; c < s->num_channels; c++) { |
580 |
int i;
|
581 |
int offset = 0; |
582 |
for (i = 0; i < s->channel[c].num_subframes; i++) { |
583 |
dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
|
584 |
" len %i\n", s->frame_num, c, i,
|
585 |
s->channel[c].subframe_len[i]); |
586 |
s->channel[c].subframe_offset[i] = offset; |
587 |
offset += s->channel[c].subframe_len[i]; |
588 |
} |
589 |
} |
590 |
|
591 |
return 0; |
592 |
} |
593 |
|
594 |
/**
|
595 |
*@brief Calculate a decorrelation matrix from the bitstream parameters.
|
596 |
*@param s codec context
|
597 |
*@param chgroup channel group for which the matrix needs to be calculated
|
598 |
*/
|
599 |
static void decode_decorrelation_matrix(WMAProDecodeCtx *s, |
600 |
WMAProChannelGrp *chgroup) |
601 |
{ |
602 |
int i;
|
603 |
int offset = 0; |
604 |
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; |
605 |
memset(chgroup->decorrelation_matrix, 0, s->num_channels *
|
606 |
s->num_channels * sizeof(*chgroup->decorrelation_matrix));
|
607 |
|
608 |
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) |
609 |
rotation_offset[i] = get_bits(&s->gb, 6);
|
610 |
|
611 |
for (i = 0; i < chgroup->num_channels; i++) |
612 |
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = |
613 |
get_bits1(&s->gb) ? 1.0 : -1.0; |
614 |
|
615 |
for (i = 1; i < chgroup->num_channels; i++) { |
616 |
int x;
|
617 |
for (x = 0; x < i; x++) { |
618 |
int y;
|
619 |
for (y = 0; y < i + 1; y++) { |
620 |
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
|
621 |
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
|
622 |
int n = rotation_offset[offset + x];
|
623 |
float sinv;
|
624 |
float cosv;
|
625 |
|
626 |
if (n < 32) { |
627 |
sinv = sin64[n]; |
628 |
cosv = sin64[32 - n];
|
629 |
} else {
|
630 |
sinv = sin64[64 - n];
|
631 |
cosv = -sin64[n - 32];
|
632 |
} |
633 |
|
634 |
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = |
635 |
(v1 * sinv) - (v2 * cosv); |
636 |
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = |
637 |
(v1 * cosv) + (v2 * sinv); |
638 |
} |
639 |
} |
640 |
offset += i; |
641 |
} |
642 |
} |
643 |
|
644 |
/**
|
645 |
*@brief Decode channel transformation parameters
|
646 |
*@param s codec context
|
647 |
*@return 0 in case of success, < 0 in case of bitstream errors
|
648 |
*/
|
649 |
static int decode_channel_transform(WMAProDecodeCtx* s) |
650 |
{ |
651 |
int i;
|
652 |
/* should never consume more than 1921 bits for the 8 channel case
|
653 |
* 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
|
654 |
* + MAX_CHANNELS + MAX_BANDS + 1)
|
655 |
*/
|
656 |
|
657 |
/** in the one channel case channel transforms are pointless */
|
658 |
s->num_chgroups = 0;
|
659 |
if (s->num_channels > 1) { |
660 |
int remaining_channels = s->channels_for_cur_subframe;
|
661 |
|
662 |
if (get_bits1(&s->gb)) {
|
663 |
av_log_ask_for_sample(s->avctx, |
664 |
"unsupported channel transform bit\n");
|
665 |
return AVERROR_INVALIDDATA;
|
666 |
} |
667 |
|
668 |
for (s->num_chgroups = 0; remaining_channels && |
669 |
s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { |
670 |
WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; |
671 |
float** channel_data = chgroup->channel_data;
|
672 |
chgroup->num_channels = 0;
|
673 |
chgroup->transform = 0;
|
674 |
|
675 |
/** decode channel mask */
|
676 |
if (remaining_channels > 2) { |
677 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
678 |
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
679 |
if (!s->channel[channel_idx].grouped
|
680 |
&& get_bits1(&s->gb)) { |
681 |
++chgroup->num_channels; |
682 |
s->channel[channel_idx].grouped = 1;
|
683 |
*channel_data++ = s->channel[channel_idx].coeffs; |
684 |
} |
685 |
} |
686 |
} else {
|
687 |
chgroup->num_channels = remaining_channels; |
688 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
689 |
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
690 |
if (!s->channel[channel_idx].grouped)
|
691 |
*channel_data++ = s->channel[channel_idx].coeffs; |
692 |
s->channel[channel_idx].grouped = 1;
|
693 |
} |
694 |
} |
695 |
|
696 |
/** decode transform type */
|
697 |
if (chgroup->num_channels == 2) { |
698 |
if (get_bits1(&s->gb)) {
|
699 |
if (get_bits1(&s->gb)) {
|
700 |
av_log_ask_for_sample(s->avctx, |
701 |
"unsupported channel transform type\n");
|
702 |
} |
703 |
} else {
|
704 |
chgroup->transform = 1;
|
705 |
if (s->num_channels == 2) { |
706 |
chgroup->decorrelation_matrix[0] = 1.0; |
707 |
chgroup->decorrelation_matrix[1] = -1.0; |
708 |
chgroup->decorrelation_matrix[2] = 1.0; |
709 |
chgroup->decorrelation_matrix[3] = 1.0; |
710 |
} else {
|
711 |
/** cos(pi/4) */
|
712 |
chgroup->decorrelation_matrix[0] = 0.70703125; |
713 |
chgroup->decorrelation_matrix[1] = -0.70703125; |
714 |
chgroup->decorrelation_matrix[2] = 0.70703125; |
715 |
chgroup->decorrelation_matrix[3] = 0.70703125; |
716 |
} |
717 |
} |
718 |
} else if (chgroup->num_channels > 2) { |
719 |
if (get_bits1(&s->gb)) {
|
720 |
chgroup->transform = 1;
|
721 |
if (get_bits1(&s->gb)) {
|
722 |
decode_decorrelation_matrix(s, chgroup); |
723 |
} else {
|
724 |
/** FIXME: more than 6 coupled channels not supported */
|
725 |
if (chgroup->num_channels > 6) { |
726 |
av_log_ask_for_sample(s->avctx, |
727 |
"coupled channels > 6\n");
|
728 |
} else {
|
729 |
memcpy(chgroup->decorrelation_matrix, |
730 |
default_decorrelation[chgroup->num_channels], |
731 |
chgroup->num_channels * chgroup->num_channels * |
732 |
sizeof(*chgroup->decorrelation_matrix));
|
733 |
} |
734 |
} |
735 |
} |
736 |
} |
737 |
|
738 |
/** decode transform on / off */
|
739 |
if (chgroup->transform) {
|
740 |
if (!get_bits1(&s->gb)) {
|
741 |
int i;
|
742 |
/** transform can be enabled for individual bands */
|
743 |
for (i = 0; i < s->num_bands; i++) { |
744 |
chgroup->transform_band[i] = get_bits1(&s->gb); |
745 |
} |
746 |
} else {
|
747 |
memset(chgroup->transform_band, 1, s->num_bands);
|
748 |
} |
749 |
} |
750 |
remaining_channels -= chgroup->num_channels; |
751 |
} |
752 |
} |
753 |
return 0; |
754 |
} |
755 |
|
756 |
/**
|
757 |
*@brief Extract the coefficients from the bitstream.
|
758 |
*@param s codec context
|
759 |
*@param c current channel number
|
760 |
*@return 0 on success, < 0 in case of bitstream errors
|
761 |
*/
|
762 |
static int decode_coeffs(WMAProDecodeCtx *s, int c) |
763 |
{ |
764 |
/* Integers 0..15 as single-precision floats. The table saves a
|
765 |
costly int to float conversion, and storing the values as
|
766 |
integers allows fast sign-flipping. */
|
767 |
static const int fval_tab[16] = { |
768 |
0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
769 |
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
770 |
0x41000000, 0x41100000, 0x41200000, 0x41300000, |
771 |
0x41400000, 0x41500000, 0x41600000, 0x41700000, |
772 |
}; |
773 |
int vlctable;
|
774 |
VLC* vlc; |
775 |
WMAProChannelCtx* ci = &s->channel[c]; |
776 |
int rl_mode = 0; |
777 |
int cur_coeff = 0; |
778 |
int num_zeros = 0; |
779 |
const uint16_t* run;
|
780 |
const float* level; |
781 |
|
782 |
dprintf(s->avctx, "decode coefficients for channel %i\n", c);
|
783 |
|
784 |
vlctable = get_bits1(&s->gb); |
785 |
vlc = &coef_vlc[vlctable]; |
786 |
|
787 |
if (vlctable) {
|
788 |
run = coef1_run; |
789 |
level = coef1_level; |
790 |
} else {
|
791 |
run = coef0_run; |
792 |
level = coef0_level; |
793 |
} |
794 |
|
795 |
/** decode vector coefficients (consumes up to 167 bits per iteration for
|
796 |
4 vector coded large values) */
|
797 |
while (!rl_mode && cur_coeff + 3 < s->subframe_len) { |
798 |
int vals[4]; |
799 |
int i;
|
800 |
unsigned int idx; |
801 |
|
802 |
idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); |
803 |
|
804 |
if (idx == HUFF_VEC4_SIZE - 1) { |
805 |
for (i = 0; i < 4; i += 2) { |
806 |
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
807 |
if (idx == HUFF_VEC2_SIZE - 1) { |
808 |
int v0, v1;
|
809 |
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
810 |
if (v0 == HUFF_VEC1_SIZE - 1) |
811 |
v0 += ff_wma_get_large_val(&s->gb); |
812 |
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
813 |
if (v1 == HUFF_VEC1_SIZE - 1) |
814 |
v1 += ff_wma_get_large_val(&s->gb); |
815 |
((float*)vals)[i ] = v0;
|
816 |
((float*)vals)[i+1] = v1; |
817 |
} else {
|
818 |
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
|
819 |
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
820 |
} |
821 |
} |
822 |
} else {
|
823 |
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
824 |
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
825 |
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
826 |
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
827 |
} |
828 |
|
829 |
/** decode sign */
|
830 |
for (i = 0; i < 4; i++) { |
831 |
if (vals[i]) {
|
832 |
int sign = get_bits1(&s->gb) - 1; |
833 |
*(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
|
834 |
num_zeros = 0;
|
835 |
} else {
|
836 |
ci->coeffs[cur_coeff] = 0;
|
837 |
/** switch to run level mode when subframe_len / 128 zeros
|
838 |
were found in a row */
|
839 |
rl_mode |= (++num_zeros > s->subframe_len >> 8);
|
840 |
} |
841 |
++cur_coeff; |
842 |
} |
843 |
} |
844 |
|
845 |
/** decode run level coded coefficients */
|
846 |
if (rl_mode) {
|
847 |
memset(&ci->coeffs[cur_coeff], 0,
|
848 |
sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
|
849 |
if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
|
850 |
level, run, 1, ci->coeffs,
|
851 |
cur_coeff, s->subframe_len, |
852 |
s->subframe_len, s->esc_len, 0))
|
853 |
return AVERROR_INVALIDDATA;
|
854 |
} |
855 |
|
856 |
return 0; |
857 |
} |
858 |
|
859 |
/**
|
860 |
*@brief Extract scale factors from the bitstream.
|
861 |
*@param s codec context
|
862 |
*@return 0 on success, < 0 in case of bitstream errors
|
863 |
*/
|
864 |
static int decode_scale_factors(WMAProDecodeCtx* s) |
865 |
{ |
866 |
int i;
|
867 |
|
868 |
/** should never consume more than 5344 bits
|
869 |
* MAX_CHANNELS * (1 + MAX_BANDS * 23)
|
870 |
*/
|
871 |
|
872 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
873 |
int c = s->channel_indexes_for_cur_subframe[i];
|
874 |
int* sf;
|
875 |
int* sf_end;
|
876 |
s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; |
877 |
sf_end = s->channel[c].scale_factors + s->num_bands; |
878 |
|
879 |
/** resample scale factors for the new block size
|
880 |
* as the scale factors might need to be resampled several times
|
881 |
* before some new values are transmitted, a backup of the last
|
882 |
* transmitted scale factors is kept in saved_scale_factors
|
883 |
*/
|
884 |
if (s->channel[c].reuse_sf) {
|
885 |
const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
|
886 |
int b;
|
887 |
for (b = 0; b < s->num_bands; b++) |
888 |
s->channel[c].scale_factors[b] = |
889 |
s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; |
890 |
} |
891 |
|
892 |
if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
|
893 |
|
894 |
if (!s->channel[c].reuse_sf) {
|
895 |
int val;
|
896 |
/** decode DPCM coded scale factors */
|
897 |
s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; |
898 |
val = 45 / s->channel[c].scale_factor_step;
|
899 |
for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
|
900 |
val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
|
901 |
*sf = val; |
902 |
} |
903 |
} else {
|
904 |
int i;
|
905 |
/** run level decode differences to the resampled factors */
|
906 |
for (i = 0; i < s->num_bands; i++) { |
907 |
int idx;
|
908 |
int skip;
|
909 |
int val;
|
910 |
int sign;
|
911 |
|
912 |
idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); |
913 |
|
914 |
if (!idx) {
|
915 |
uint32_t code = get_bits(&s->gb, 14);
|
916 |
val = code >> 6;
|
917 |
sign = (code & 1) - 1; |
918 |
skip = (code & 0x3f) >> 1; |
919 |
} else if (idx == 1) { |
920 |
break;
|
921 |
} else {
|
922 |
skip = scale_rl_run[idx]; |
923 |
val = scale_rl_level[idx]; |
924 |
sign = get_bits1(&s->gb)-1;
|
925 |
} |
926 |
|
927 |
i += skip; |
928 |
if (i >= s->num_bands) {
|
929 |
av_log(s->avctx, AV_LOG_ERROR, |
930 |
"invalid scale factor coding\n");
|
931 |
return AVERROR_INVALIDDATA;
|
932 |
} |
933 |
s->channel[c].scale_factors[i] += (val ^ sign) - sign; |
934 |
} |
935 |
} |
936 |
/** swap buffers */
|
937 |
s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; |
938 |
s->channel[c].table_idx = s->table_idx; |
939 |
s->channel[c].reuse_sf = 1;
|
940 |
} |
941 |
|
942 |
/** calculate new scale factor maximum */
|
943 |
s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
|
944 |
for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { |
945 |
s->channel[c].max_scale_factor = |
946 |
FFMAX(s->channel[c].max_scale_factor, *sf); |
947 |
} |
948 |
|
949 |
} |
950 |
return 0; |
951 |
} |
952 |
|
953 |
/**
|
954 |
*@brief Reconstruct the individual channel data.
|
955 |
*@param s codec context
|
956 |
*/
|
957 |
static void inverse_channel_transform(WMAProDecodeCtx *s) |
958 |
{ |
959 |
int i;
|
960 |
|
961 |
for (i = 0; i < s->num_chgroups; i++) { |
962 |
if (s->chgroup[i].transform) {
|
963 |
float data[WMAPRO_MAX_CHANNELS];
|
964 |
const int num_channels = s->chgroup[i].num_channels; |
965 |
float** ch_data = s->chgroup[i].channel_data;
|
966 |
float** ch_end = ch_data + num_channels;
|
967 |
const int8_t* tb = s->chgroup[i].transform_band;
|
968 |
int16_t* sfb; |
969 |
|
970 |
/** multichannel decorrelation */
|
971 |
for (sfb = s->cur_sfb_offsets;
|
972 |
sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { |
973 |
int y;
|
974 |
if (*tb++ == 1) { |
975 |
/** multiply values with the decorrelation_matrix */
|
976 |
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { |
977 |
const float* mat = s->chgroup[i].decorrelation_matrix; |
978 |
const float* data_end = data + num_channels; |
979 |
float* data_ptr = data;
|
980 |
float** ch;
|
981 |
|
982 |
for (ch = ch_data; ch < ch_end; ch++)
|
983 |
*data_ptr++ = (*ch)[y]; |
984 |
|
985 |
for (ch = ch_data; ch < ch_end; ch++) {
|
986 |
float sum = 0; |
987 |
data_ptr = data; |
988 |
while (data_ptr < data_end)
|
989 |
sum += *data_ptr++ * *mat++; |
990 |
|
991 |
(*ch)[y] = sum; |
992 |
} |
993 |
} |
994 |
} else if (s->num_channels == 2) { |
995 |
int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; |
996 |
s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0], |
997 |
ch_data[0] + sfb[0], |
998 |
181.0 / 128, len); |
999 |
s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0], |
1000 |
ch_data[1] + sfb[0], |
1001 |
181.0 / 128, len); |
1002 |
} |
1003 |
} |
1004 |
} |
1005 |
} |
1006 |
} |
1007 |
|
1008 |
/**
|
1009 |
*@brief Apply sine window and reconstruct the output buffer.
|
1010 |
*@param s codec context
|
1011 |
*/
|
1012 |
static void wmapro_window(WMAProDecodeCtx *s) |
1013 |
{ |
1014 |
int i;
|
1015 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1016 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1017 |
float* window;
|
1018 |
int winlen = s->channel[c].prev_block_len;
|
1019 |
float* start = s->channel[c].coeffs - (winlen >> 1); |
1020 |
|
1021 |
if (s->subframe_len < winlen) {
|
1022 |
start += (winlen - s->subframe_len) >> 1;
|
1023 |
winlen = s->subframe_len; |
1024 |
} |
1025 |
|
1026 |
window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS]; |
1027 |
|
1028 |
winlen >>= 1;
|
1029 |
|
1030 |
s->dsp.vector_fmul_window(start, start, start + winlen, |
1031 |
window, 0, winlen);
|
1032 |
|
1033 |
s->channel[c].prev_block_len = s->subframe_len; |
1034 |
} |
1035 |
} |
1036 |
|
1037 |
/**
|
1038 |
*@brief Decode a single subframe (block).
|
1039 |
*@param s codec context
|
1040 |
*@return 0 on success, < 0 when decoding failed
|
1041 |
*/
|
1042 |
static int decode_subframe(WMAProDecodeCtx *s) |
1043 |
{ |
1044 |
int offset = s->samples_per_frame;
|
1045 |
int subframe_len = s->samples_per_frame;
|
1046 |
int i;
|
1047 |
int total_samples = s->samples_per_frame * s->num_channels;
|
1048 |
int transmit_coeffs = 0; |
1049 |
int cur_subwoofer_cutoff;
|
1050 |
|
1051 |
s->subframe_offset = get_bits_count(&s->gb); |
1052 |
|
1053 |
/** reset channel context and find the next block offset and size
|
1054 |
== the next block of the channel with the smallest number of
|
1055 |
decoded samples
|
1056 |
*/
|
1057 |
for (i = 0; i < s->num_channels; i++) { |
1058 |
s->channel[i].grouped = 0;
|
1059 |
if (offset > s->channel[i].decoded_samples) {
|
1060 |
offset = s->channel[i].decoded_samples; |
1061 |
subframe_len = |
1062 |
s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
1063 |
} |
1064 |
} |
1065 |
|
1066 |
dprintf(s->avctx, |
1067 |
"processing subframe with offset %i len %i\n", offset, subframe_len);
|
1068 |
|
1069 |
/** get a list of all channels that contain the estimated block */
|
1070 |
s->channels_for_cur_subframe = 0;
|
1071 |
for (i = 0; i < s->num_channels; i++) { |
1072 |
const int cur_subframe = s->channel[i].cur_subframe; |
1073 |
/** substract already processed samples */
|
1074 |
total_samples -= s->channel[i].decoded_samples; |
1075 |
|
1076 |
/** and count if there are multiple subframes that match our profile */
|
1077 |
if (offset == s->channel[i].decoded_samples &&
|
1078 |
subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
1079 |
total_samples -= s->channel[i].subframe_len[cur_subframe]; |
1080 |
s->channel[i].decoded_samples += |
1081 |
s->channel[i].subframe_len[cur_subframe]; |
1082 |
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
1083 |
++s->channels_for_cur_subframe; |
1084 |
} |
1085 |
} |
1086 |
|
1087 |
/** check if the frame will be complete after processing the
|
1088 |
estimated block */
|
1089 |
if (!total_samples)
|
1090 |
s->parsed_all_subframes = 1;
|
1091 |
|
1092 |
|
1093 |
dprintf(s->avctx, "subframe is part of %i channels\n",
|
1094 |
s->channels_for_cur_subframe); |
1095 |
|
1096 |
/** calculate number of scale factor bands and their offsets */
|
1097 |
s->table_idx = av_log2(s->samples_per_frame/subframe_len); |
1098 |
s->num_bands = s->num_sfb[s->table_idx]; |
1099 |
s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; |
1100 |
cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; |
1101 |
|
1102 |
/** configure the decoder for the current subframe */
|
1103 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1104 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1105 |
|
1106 |
s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
|
1107 |
+ offset]; |
1108 |
} |
1109 |
|
1110 |
s->subframe_len = subframe_len; |
1111 |
s->esc_len = av_log2(s->subframe_len - 1) + 1; |
1112 |
|
1113 |
/** skip extended header if any */
|
1114 |
if (get_bits1(&s->gb)) {
|
1115 |
int num_fill_bits;
|
1116 |
if (!(num_fill_bits = get_bits(&s->gb, 2))) { |
1117 |
int len = get_bits(&s->gb, 4); |
1118 |
num_fill_bits = get_bits(&s->gb, len) + 1;
|
1119 |
} |
1120 |
|
1121 |
if (num_fill_bits >= 0) { |
1122 |
if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
|
1123 |
av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
|
1124 |
return AVERROR_INVALIDDATA;
|
1125 |
} |
1126 |
|
1127 |
skip_bits_long(&s->gb, num_fill_bits); |
1128 |
} |
1129 |
} |
1130 |
|
1131 |
/** no idea for what the following bit is used */
|
1132 |
if (get_bits1(&s->gb)) {
|
1133 |
av_log_ask_for_sample(s->avctx, "reserved bit set\n");
|
1134 |
return AVERROR_INVALIDDATA;
|
1135 |
} |
1136 |
|
1137 |
|
1138 |
if (decode_channel_transform(s) < 0) |
1139 |
return AVERROR_INVALIDDATA;
|
1140 |
|
1141 |
|
1142 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1143 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1144 |
if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
|
1145 |
transmit_coeffs = 1;
|
1146 |
} |
1147 |
|
1148 |
if (transmit_coeffs) {
|
1149 |
int step;
|
1150 |
int quant_step = 90 * s->bits_per_sample >> 4; |
1151 |
if ((get_bits1(&s->gb))) {
|
1152 |
/** FIXME: might change run level mode decision */
|
1153 |
av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
|
1154 |
return AVERROR_INVALIDDATA;
|
1155 |
} |
1156 |
/** decode quantization step */
|
1157 |
step = get_sbits(&s->gb, 6);
|
1158 |
quant_step += step; |
1159 |
if (step == -32 || step == 31) { |
1160 |
const int sign = (step == 31) - 1; |
1161 |
int quant = 0; |
1162 |
while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && |
1163 |
(step = get_bits(&s->gb, 5)) == 31) { |
1164 |
quant += 31;
|
1165 |
} |
1166 |
quant_step += ((quant + step) ^ sign) - sign; |
1167 |
} |
1168 |
if (quant_step < 0) { |
1169 |
av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
|
1170 |
} |
1171 |
|
1172 |
/** decode quantization step modifiers for every channel */
|
1173 |
|
1174 |
if (s->channels_for_cur_subframe == 1) { |
1175 |
s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
|
1176 |
} else {
|
1177 |
int modifier_len = get_bits(&s->gb, 3); |
1178 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1179 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1180 |
s->channel[c].quant_step = quant_step; |
1181 |
if (get_bits1(&s->gb)) {
|
1182 |
if (modifier_len) {
|
1183 |
s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
|
1184 |
} else
|
1185 |
++s->channel[c].quant_step; |
1186 |
} |
1187 |
} |
1188 |
} |
1189 |
|
1190 |
/** decode scale factors */
|
1191 |
if (decode_scale_factors(s) < 0) |
1192 |
return AVERROR_INVALIDDATA;
|
1193 |
} |
1194 |
|
1195 |
dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
|
1196 |
get_bits_count(&s->gb) - s->subframe_offset); |
1197 |
|
1198 |
/** parse coefficients */
|
1199 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1200 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1201 |
if (s->channel[c].transmit_coefs &&
|
1202 |
get_bits_count(&s->gb) < s->num_saved_bits) { |
1203 |
decode_coeffs(s, c); |
1204 |
} else
|
1205 |
memset(s->channel[c].coeffs, 0,
|
1206 |
sizeof(*s->channel[c].coeffs) * subframe_len);
|
1207 |
} |
1208 |
|
1209 |
dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
|
1210 |
get_bits_count(&s->gb) - s->subframe_offset); |
1211 |
|
1212 |
if (transmit_coeffs) {
|
1213 |
/** reconstruct the per channel data */
|
1214 |
inverse_channel_transform(s); |
1215 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1216 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1217 |
const int* sf = s->channel[c].scale_factors; |
1218 |
int b;
|
1219 |
|
1220 |
if (c == s->lfe_channel)
|
1221 |
memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * |
1222 |
(subframe_len - cur_subwoofer_cutoff)); |
1223 |
|
1224 |
/** inverse quantization and rescaling */
|
1225 |
for (b = 0; b < s->num_bands; b++) { |
1226 |
const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); |
1227 |
const int exp = s->channel[c].quant_step - |
1228 |
(s->channel[c].max_scale_factor - *sf++) * |
1229 |
s->channel[c].scale_factor_step; |
1230 |
const float quant = pow(10.0, exp / 20.0); |
1231 |
int start = s->cur_sfb_offsets[b];
|
1232 |
s->dsp.vector_fmul_scalar(s->tmp + start, |
1233 |
s->channel[c].coeffs + start, |
1234 |
quant, end - start); |
1235 |
} |
1236 |
|
1237 |
/** apply imdct (ff_imdct_half == DCTIV with reverse) */
|
1238 |
ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS], |
1239 |
s->channel[c].coeffs, s->tmp); |
1240 |
} |
1241 |
} |
1242 |
|
1243 |
/** window and overlapp-add */
|
1244 |
wmapro_window(s); |
1245 |
|
1246 |
/** handled one subframe */
|
1247 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1248 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1249 |
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
|
1250 |
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
|
1251 |
return AVERROR_INVALIDDATA;
|
1252 |
} |
1253 |
++s->channel[c].cur_subframe; |
1254 |
} |
1255 |
|
1256 |
return 0; |
1257 |
} |
1258 |
|
1259 |
/**
|
1260 |
*@brief Decode one WMA frame.
|
1261 |
*@param s codec context
|
1262 |
*@return 0 if the trailer bit indicates that this is the last frame,
|
1263 |
* 1 if there are additional frames
|
1264 |
*/
|
1265 |
static int decode_frame(WMAProDecodeCtx *s) |
1266 |
{ |
1267 |
GetBitContext* gb = &s->gb; |
1268 |
int more_frames = 0; |
1269 |
int len = 0; |
1270 |
int i;
|
1271 |
|
1272 |
/** check for potential output buffer overflow */
|
1273 |
if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
|
1274 |
/** return an error if no frame could be decoded at all */
|
1275 |
av_log(s->avctx, AV_LOG_ERROR, |
1276 |
"not enough space for the output samples\n");
|
1277 |
s->packet_loss = 1;
|
1278 |
return 0; |
1279 |
} |
1280 |
|
1281 |
/** get frame length */
|
1282 |
if (s->len_prefix)
|
1283 |
len = get_bits(gb, s->log2_frame_size); |
1284 |
|
1285 |
dprintf(s->avctx, "decoding frame with length %x\n", len);
|
1286 |
|
1287 |
/** decode tile information */
|
1288 |
if (decode_tilehdr(s)) {
|
1289 |
s->packet_loss = 1;
|
1290 |
return 0; |
1291 |
} |
1292 |
|
1293 |
/** read postproc transform */
|
1294 |
if (s->num_channels > 1 && get_bits1(gb)) { |
1295 |
if (get_bits1(gb)) {
|
1296 |
for (i = 0; i < s->num_channels * s->num_channels; i++) |
1297 |
skip_bits(gb, 4);
|
1298 |
} |
1299 |
} |
1300 |
|
1301 |
/** read drc info */
|
1302 |
if (s->dynamic_range_compression) {
|
1303 |
s->drc_gain = get_bits(gb, 8);
|
1304 |
dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
|
1305 |
} |
1306 |
|
1307 |
/** no idea what these are for, might be the number of samples
|
1308 |
that need to be skipped at the beginning or end of a stream */
|
1309 |
if (get_bits1(gb)) {
|
1310 |
int skip;
|
1311 |
|
1312 |
/** usually true for the first frame */
|
1313 |
if (get_bits1(gb)) {
|
1314 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
1315 |
dprintf(s->avctx, "start skip: %i\n", skip);
|
1316 |
} |
1317 |
|
1318 |
/** sometimes true for the last frame */
|
1319 |
if (get_bits1(gb)) {
|
1320 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
1321 |
dprintf(s->avctx, "end skip: %i\n", skip);
|
1322 |
} |
1323 |
|
1324 |
} |
1325 |
|
1326 |
dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
|
1327 |
get_bits_count(gb) - s->frame_offset); |
1328 |
|
1329 |
/** reset subframe states */
|
1330 |
s->parsed_all_subframes = 0;
|
1331 |
for (i = 0; i < s->num_channels; i++) { |
1332 |
s->channel[i].decoded_samples = 0;
|
1333 |
s->channel[i].cur_subframe = 0;
|
1334 |
s->channel[i].reuse_sf = 0;
|
1335 |
} |
1336 |
|
1337 |
/** decode all subframes */
|
1338 |
while (!s->parsed_all_subframes) {
|
1339 |
if (decode_subframe(s) < 0) { |
1340 |
s->packet_loss = 1;
|
1341 |
return 0; |
1342 |
} |
1343 |
} |
1344 |
|
1345 |
/** interleave samples and write them to the output buffer */
|
1346 |
for (i = 0; i < s->num_channels; i++) { |
1347 |
float* ptr = s->samples + i;
|
1348 |
int incr = s->num_channels;
|
1349 |
float* iptr = s->channel[i].out;
|
1350 |
float* iend = iptr + s->samples_per_frame;
|
1351 |
|
1352 |
// FIXME should create/use a DSP function here
|
1353 |
while (iptr < iend) {
|
1354 |
*ptr = *iptr++; |
1355 |
ptr += incr; |
1356 |
} |
1357 |
|
1358 |
/** reuse second half of the IMDCT output for the next frame */
|
1359 |
memcpy(&s->channel[i].out[0],
|
1360 |
&s->channel[i].out[s->samples_per_frame], |
1361 |
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
1362 |
} |
1363 |
|
1364 |
if (s->skip_frame) {
|
1365 |
s->skip_frame = 0;
|
1366 |
} else
|
1367 |
s->samples += s->num_channels * s->samples_per_frame; |
1368 |
|
1369 |
if (s->len_prefix) {
|
1370 |
if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
1371 |
/** FIXME: not sure if this is always an error */
|
1372 |
av_log(s->avctx, AV_LOG_ERROR, |
1373 |
"frame[%i] would have to skip %i bits\n", s->frame_num,
|
1374 |
len - (get_bits_count(gb) - s->frame_offset) - 1);
|
1375 |
s->packet_loss = 1;
|
1376 |
return 0; |
1377 |
} |
1378 |
|
1379 |
/** skip the rest of the frame data */
|
1380 |
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
|
1381 |
} else {
|
1382 |
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) { |
1383 |
} |
1384 |
} |
1385 |
|
1386 |
/** decode trailer bit */
|
1387 |
more_frames = get_bits1(gb); |
1388 |
|
1389 |
++s->frame_num; |
1390 |
return more_frames;
|
1391 |
} |
1392 |
|
1393 |
/**
|
1394 |
*@brief Calculate remaining input buffer length.
|
1395 |
*@param s codec context
|
1396 |
*@param gb bitstream reader context
|
1397 |
*@return remaining size in bits
|
1398 |
*/
|
1399 |
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) |
1400 |
{ |
1401 |
return s->buf_bit_size - get_bits_count(gb);
|
1402 |
} |
1403 |
|
1404 |
/**
|
1405 |
*@brief Fill the bit reservoir with a (partial) frame.
|
1406 |
*@param s codec context
|
1407 |
*@param gb bitstream reader context
|
1408 |
*@param len length of the partial frame
|
1409 |
*@param append decides wether to reset the buffer or not
|
1410 |
*/
|
1411 |
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, |
1412 |
int append)
|
1413 |
{ |
1414 |
int buflen;
|
1415 |
|
1416 |
/** when the frame data does not need to be concatenated, the input buffer
|
1417 |
is resetted and additional bits from the previous frame are copyed
|
1418 |
and skipped later so that a fast byte copy is possible */
|
1419 |
|
1420 |
if (!append) {
|
1421 |
s->frame_offset = get_bits_count(gb) & 7;
|
1422 |
s->num_saved_bits = s->frame_offset; |
1423 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
1424 |
} |
1425 |
|
1426 |
buflen = (s->num_saved_bits + len + 8) >> 3; |
1427 |
|
1428 |
if (len <= 0 || buflen > MAX_FRAMESIZE) { |
1429 |
av_log_ask_for_sample(s->avctx, "input buffer too small\n");
|
1430 |
s->packet_loss = 1;
|
1431 |
return;
|
1432 |
} |
1433 |
|
1434 |
s->num_saved_bits += len; |
1435 |
if (!append) {
|
1436 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
|
1437 |
s->num_saved_bits); |
1438 |
} else {
|
1439 |
int align = 8 - (get_bits_count(gb) & 7); |
1440 |
align = FFMIN(align, len); |
1441 |
put_bits(&s->pb, align, get_bits(gb, align)); |
1442 |
len -= align; |
1443 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
|
1444 |
} |
1445 |
skip_bits_long(gb, len); |
1446 |
|
1447 |
{ |
1448 |
PutBitContext tmp = s->pb; |
1449 |
flush_put_bits(&tmp); |
1450 |
} |
1451 |
|
1452 |
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
1453 |
skip_bits(&s->gb, s->frame_offset); |
1454 |
} |
1455 |
|
1456 |
/**
|
1457 |
*@brief Decode a single WMA packet.
|
1458 |
*@param avctx codec context
|
1459 |
*@param data the output buffer
|
1460 |
*@param data_size number of bytes that were written to the output buffer
|
1461 |
*@param avpkt input packet
|
1462 |
*@return number of bytes that were read from the input buffer
|
1463 |
*/
|
1464 |
static int decode_packet(AVCodecContext *avctx, |
1465 |
void *data, int *data_size, AVPacket* avpkt) |
1466 |
{ |
1467 |
WMAProDecodeCtx *s = avctx->priv_data; |
1468 |
GetBitContext* gb = &s->pgb; |
1469 |
const uint8_t* buf = avpkt->data;
|
1470 |
int buf_size = avpkt->size;
|
1471 |
int num_bits_prev_frame;
|
1472 |
int packet_sequence_number;
|
1473 |
|
1474 |
s->samples = data; |
1475 |
s->samples_end = (float*)((int8_t*)data + *data_size);
|
1476 |
*data_size = 0;
|
1477 |
|
1478 |
if (s->packet_done || s->packet_loss) {
|
1479 |
s->packet_done = 0;
|
1480 |
|
1481 |
/** sanity check for the buffer length */
|
1482 |
if (buf_size < avctx->block_align)
|
1483 |
return 0; |
1484 |
|
1485 |
s->next_packet_start = buf_size - avctx->block_align; |
1486 |
buf_size = avctx->block_align; |
1487 |
s->buf_bit_size = buf_size << 3;
|
1488 |
|
1489 |
/** parse packet header */
|
1490 |
init_get_bits(gb, buf, s->buf_bit_size); |
1491 |
packet_sequence_number = get_bits(gb, 4);
|
1492 |
skip_bits(gb, 2);
|
1493 |
|
1494 |
/** get number of bits that need to be added to the previous frame */
|
1495 |
num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
1496 |
dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
|
1497 |
num_bits_prev_frame); |
1498 |
|
1499 |
/** check for packet loss */
|
1500 |
if (!s->packet_loss &&
|
1501 |
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
1502 |
s->packet_loss = 1;
|
1503 |
av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
|
1504 |
s->packet_sequence_number, packet_sequence_number); |
1505 |
} |
1506 |
s->packet_sequence_number = packet_sequence_number; |
1507 |
|
1508 |
if (num_bits_prev_frame > 0) { |
1509 |
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
|
1510 |
if (num_bits_prev_frame >= remaining_packet_bits) {
|
1511 |
num_bits_prev_frame = remaining_packet_bits; |
1512 |
s->packet_done = 1;
|
1513 |
} |
1514 |
|
1515 |
/** append the previous frame data to the remaining data from the
|
1516 |
previous packet to create a full frame */
|
1517 |
save_bits(s, gb, num_bits_prev_frame, 1);
|
1518 |
dprintf(avctx, "accumulated %x bits of frame data\n",
|
1519 |
s->num_saved_bits - s->frame_offset); |
1520 |
|
1521 |
/** decode the cross packet frame if it is valid */
|
1522 |
if (!s->packet_loss)
|
1523 |
decode_frame(s); |
1524 |
} else if (s->num_saved_bits - s->frame_offset) { |
1525 |
dprintf(avctx, "ignoring %x previously saved bits\n",
|
1526 |
s->num_saved_bits - s->frame_offset); |
1527 |
} |
1528 |
|
1529 |
if (s->packet_loss) {
|
1530 |
/** reset number of saved bits so that the decoder
|
1531 |
does not start to decode incomplete frames in the
|
1532 |
s->len_prefix == 0 case */
|
1533 |
s->num_saved_bits = 0;
|
1534 |
s->packet_loss = 0;
|
1535 |
} |
1536 |
|
1537 |
} else {
|
1538 |
int frame_size;
|
1539 |
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
|
1540 |
init_get_bits(gb, avpkt->data, s->buf_bit_size); |
1541 |
skip_bits(gb, s->packet_offset); |
1542 |
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
|
1543 |
(frame_size = show_bits(gb, s->log2_frame_size)) && |
1544 |
frame_size <= remaining_bits(s, gb)) { |
1545 |
save_bits(s, gb, frame_size, 0);
|
1546 |
s->packet_done = !decode_frame(s); |
1547 |
} else if (!s->len_prefix |
1548 |
&& s->num_saved_bits > get_bits_count(&s->gb)) { |
1549 |
/** when the frames do not have a length prefix, we don't know
|
1550 |
the compressed length of the individual frames
|
1551 |
however, we know what part of a new packet belongs to the
|
1552 |
previous frame
|
1553 |
therefore we save the incoming packet first, then we append
|
1554 |
the "previous frame" data from the next packet so that
|
1555 |
we get a buffer that only contains full frames */
|
1556 |
s->packet_done = !decode_frame(s); |
1557 |
} else
|
1558 |
s->packet_done = 1;
|
1559 |
} |
1560 |
|
1561 |
if (s->packet_done && !s->packet_loss &&
|
1562 |
remaining_bits(s, gb) > 0) {
|
1563 |
/** save the rest of the data so that it can be decoded
|
1564 |
with the next packet */
|
1565 |
save_bits(s, gb, remaining_bits(s, gb), 0);
|
1566 |
} |
1567 |
|
1568 |
*data_size = (int8_t *)s->samples - (int8_t *)data; |
1569 |
s->packet_offset = get_bits_count(gb) & 7;
|
1570 |
|
1571 |
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; |
1572 |
} |
1573 |
|
1574 |
/**
|
1575 |
*@brief Clear decoder buffers (for seeking).
|
1576 |
*@param avctx codec context
|
1577 |
*/
|
1578 |
static void flush(AVCodecContext *avctx) |
1579 |
{ |
1580 |
WMAProDecodeCtx *s = avctx->priv_data; |
1581 |
int i;
|
1582 |
/** reset output buffer as a part of it is used during the windowing of a
|
1583 |
new frame */
|
1584 |
for (i = 0; i < s->num_channels; i++) |
1585 |
memset(s->channel[i].out, 0, s->samples_per_frame *
|
1586 |
sizeof(*s->channel[i].out));
|
1587 |
s->packet_loss = 1;
|
1588 |
} |
1589 |
|
1590 |
|
1591 |
/**
|
1592 |
*@brief wmapro decoder
|
1593 |
*/
|
1594 |
AVCodec wmapro_decoder = { |
1595 |
"wmapro",
|
1596 |
AVMEDIA_TYPE_AUDIO, |
1597 |
CODEC_ID_WMAPRO, |
1598 |
sizeof(WMAProDecodeCtx),
|
1599 |
decode_init, |
1600 |
NULL,
|
1601 |
decode_end, |
1602 |
decode_packet, |
1603 |
.capabilities = CODEC_CAP_SUBFRAMES, |
1604 |
.flush= flush, |
1605 |
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
|
1606 |
}; |