ffmpeg / libavcodec / ac3enc_fixed.c @ f7a5e779
History | View | Annotate | Download (11.5 KB)
1 |
/*
|
---|---|
2 |
* The simplest AC-3 encoder
|
3 |
* Copyright (c) 2000 Fabrice Bellard
|
4 |
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
|
5 |
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
/**
|
25 |
* @file
|
26 |
* fixed-point AC-3 encoder.
|
27 |
*/
|
28 |
|
29 |
#undef CONFIG_AC3ENC_FLOAT
|
30 |
#include "ac3enc.c" |
31 |
|
32 |
|
33 |
/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
|
34 |
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767) |
35 |
|
36 |
|
37 |
/**
|
38 |
* Finalize MDCT and free allocated memory.
|
39 |
*/
|
40 |
static av_cold void mdct_end(AC3MDCTContext *mdct) |
41 |
{ |
42 |
mdct->nbits = 0;
|
43 |
av_freep(&mdct->costab); |
44 |
av_freep(&mdct->sintab); |
45 |
av_freep(&mdct->xcos1); |
46 |
av_freep(&mdct->xsin1); |
47 |
av_freep(&mdct->rot_tmp); |
48 |
av_freep(&mdct->cplx_tmp); |
49 |
} |
50 |
|
51 |
|
52 |
/**
|
53 |
* Initialize FFT tables.
|
54 |
* @param ln log2(FFT size)
|
55 |
*/
|
56 |
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln) |
57 |
{ |
58 |
int i, n, n2;
|
59 |
float alpha;
|
60 |
|
61 |
n = 1 << ln;
|
62 |
n2 = n >> 1;
|
63 |
|
64 |
FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
|
65 |
FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
|
66 |
|
67 |
for (i = 0; i < n2; i++) { |
68 |
alpha = 2.0 * M_PI * i / n; |
69 |
mdct->costab[i] = FIX15(cos(alpha)); |
70 |
mdct->sintab[i] = FIX15(sin(alpha)); |
71 |
} |
72 |
|
73 |
return 0; |
74 |
fft_alloc_fail:
|
75 |
mdct_end(mdct); |
76 |
return AVERROR(ENOMEM);
|
77 |
} |
78 |
|
79 |
|
80 |
/**
|
81 |
* Initialize MDCT tables.
|
82 |
* @param nbits log2(MDCT size)
|
83 |
*/
|
84 |
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, |
85 |
int nbits)
|
86 |
{ |
87 |
int i, n, n4, ret;
|
88 |
|
89 |
n = 1 << nbits;
|
90 |
n4 = n >> 2;
|
91 |
|
92 |
mdct->nbits = nbits; |
93 |
|
94 |
ret = fft_init(avctx, mdct, nbits - 2);
|
95 |
if (ret)
|
96 |
return ret;
|
97 |
|
98 |
mdct->window = ff_ac3_window; |
99 |
|
100 |
FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail);
|
101 |
FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail);
|
102 |
FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail);
|
103 |
FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
|
104 |
|
105 |
for (i = 0; i < n4; i++) { |
106 |
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; |
107 |
mdct->xcos1[i] = FIX15(-cos(alpha)); |
108 |
mdct->xsin1[i] = FIX15(-sin(alpha)); |
109 |
} |
110 |
|
111 |
return 0; |
112 |
mdct_alloc_fail:
|
113 |
mdct_end(mdct); |
114 |
return AVERROR(ENOMEM);
|
115 |
} |
116 |
|
117 |
|
118 |
/** Butterfly op */
|
119 |
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
120 |
{ \ |
121 |
int ax, ay, bx, by; \
|
122 |
bx = pre1; \ |
123 |
by = pim1; \ |
124 |
ax = qre1; \ |
125 |
ay = qim1; \ |
126 |
pre = (bx + ax) >> 1; \
|
127 |
pim = (by + ay) >> 1; \
|
128 |
qre = (bx - ax) >> 1; \
|
129 |
qim = (by - ay) >> 1; \
|
130 |
} |
131 |
|
132 |
|
133 |
/** Complex multiply */
|
134 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
135 |
{ \ |
136 |
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
|
137 |
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
|
138 |
} |
139 |
|
140 |
|
141 |
/**
|
142 |
* Calculate a 2^n point complex FFT on 2^ln points.
|
143 |
* @param z complex input/output samples
|
144 |
* @param ln log2(FFT size)
|
145 |
*/
|
146 |
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln) |
147 |
{ |
148 |
int j, l, np, np2;
|
149 |
int nblocks, nloops;
|
150 |
register IComplex *p,*q;
|
151 |
int tmp_re, tmp_im;
|
152 |
|
153 |
np = 1 << ln;
|
154 |
|
155 |
/* reverse */
|
156 |
for (j = 0; j < np; j++) { |
157 |
int k = av_reverse[j] >> (8 - ln); |
158 |
if (k < j)
|
159 |
FFSWAP(IComplex, z[k], z[j]); |
160 |
} |
161 |
|
162 |
/* pass 0 */
|
163 |
|
164 |
p = &z[0];
|
165 |
j = np >> 1;
|
166 |
do {
|
167 |
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
168 |
p[0].re, p[0].im, p[1].re, p[1].im); |
169 |
p += 2;
|
170 |
} while (--j);
|
171 |
|
172 |
/* pass 1 */
|
173 |
|
174 |
p = &z[0];
|
175 |
j = np >> 2;
|
176 |
do {
|
177 |
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
178 |
p[0].re, p[0].im, p[2].re, p[2].im); |
179 |
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
180 |
p[1].re, p[1].im, p[3].im, -p[3].re); |
181 |
p+=4;
|
182 |
} while (--j);
|
183 |
|
184 |
/* pass 2 .. ln-1 */
|
185 |
|
186 |
nblocks = np >> 3;
|
187 |
nloops = 1 << 2; |
188 |
np2 = np >> 1;
|
189 |
do {
|
190 |
p = z; |
191 |
q = z + nloops; |
192 |
for (j = 0; j < nblocks; j++) { |
193 |
BF(p->re, p->im, q->re, q->im, |
194 |
p->re, p->im, q->re, q->im); |
195 |
p++; |
196 |
q++; |
197 |
for(l = nblocks; l < np2; l += nblocks) {
|
198 |
CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im); |
199 |
BF(p->re, p->im, q->re, q->im, |
200 |
p->re, p->im, tmp_re, tmp_im); |
201 |
p++; |
202 |
q++; |
203 |
} |
204 |
p += nloops; |
205 |
q += nloops; |
206 |
} |
207 |
nblocks = nblocks >> 1;
|
208 |
nloops = nloops << 1;
|
209 |
} while (nblocks);
|
210 |
} |
211 |
|
212 |
|
213 |
/**
|
214 |
* Calculate a 512-point MDCT
|
215 |
* @param out 256 output frequency coefficients
|
216 |
* @param in 512 windowed input audio samples
|
217 |
*/
|
218 |
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) |
219 |
{ |
220 |
int i, re, im, n, n2, n4;
|
221 |
int16_t *rot = mdct->rot_tmp; |
222 |
IComplex *x = mdct->cplx_tmp; |
223 |
|
224 |
n = 1 << mdct->nbits;
|
225 |
n2 = n >> 1;
|
226 |
n4 = n >> 2;
|
227 |
|
228 |
/* shift to simplify computations */
|
229 |
for (i = 0; i <n4; i++) |
230 |
rot[i] = -in[i + 3*n4];
|
231 |
memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); |
232 |
|
233 |
/* pre rotation */
|
234 |
for (i = 0; i < n4; i++) { |
235 |
re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; |
236 |
im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; |
237 |
CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); |
238 |
} |
239 |
|
240 |
fft(mdct, x, mdct->nbits - 2);
|
241 |
|
242 |
/* post rotation */
|
243 |
for (i = 0; i < n4; i++) { |
244 |
re = x[i].re; |
245 |
im = x[i].im; |
246 |
CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); |
247 |
} |
248 |
} |
249 |
|
250 |
|
251 |
/**
|
252 |
* Apply KBD window to input samples prior to MDCT.
|
253 |
*/
|
254 |
static void apply_window(DSPContext *dsp, int16_t *output, const int16_t *input, |
255 |
const int16_t *window, int n) |
256 |
{ |
257 |
int i;
|
258 |
int n2 = n >> 1; |
259 |
|
260 |
for (i = 0; i < n2; i++) { |
261 |
output[i] = MUL16(input[i], window[i]) >> 15;
|
262 |
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; |
263 |
} |
264 |
} |
265 |
|
266 |
|
267 |
/**
|
268 |
* Calculate the log2() of the maximum absolute value in an array.
|
269 |
* @param tab input array
|
270 |
* @param n number of values in the array
|
271 |
* @return log2(max(abs(tab[])))
|
272 |
*/
|
273 |
static int log2_tab(AC3EncodeContext *s, int16_t *src, int len) |
274 |
{ |
275 |
int v = s->ac3dsp.ac3_max_msb_abs_int16(src, len);
|
276 |
return av_log2(v);
|
277 |
} |
278 |
|
279 |
|
280 |
/**
|
281 |
* Left-shift each value in an array by a specified amount.
|
282 |
* @param tab input array
|
283 |
* @param n number of values in the array
|
284 |
* @param lshift left shift amount
|
285 |
*/
|
286 |
static void lshift_tab(int16_t *tab, int n, unsigned int lshift) |
287 |
{ |
288 |
int i;
|
289 |
|
290 |
if (lshift > 0) { |
291 |
for (i = 0; i < n; i++) |
292 |
tab[i] <<= lshift; |
293 |
} |
294 |
} |
295 |
|
296 |
|
297 |
/**
|
298 |
* Shift each value in an array by a specified amount.
|
299 |
* @param src input array
|
300 |
* @param n number of values in the array
|
301 |
* @param shift shift amount (negative=right, positive=left)
|
302 |
*/
|
303 |
static void shift_int32(int32_t *src, int n, int shift) |
304 |
{ |
305 |
int i;
|
306 |
|
307 |
if (shift > 0) { |
308 |
for (i = 0; i < n; i++) |
309 |
src[i] <<= shift; |
310 |
} else if (shift < 0) { |
311 |
shift = -shift; |
312 |
for (i = 0; i < n; i++) |
313 |
src[i] >>= shift; |
314 |
} |
315 |
} |
316 |
|
317 |
|
318 |
/**
|
319 |
* Normalize the input samples to use the maximum available precision.
|
320 |
* This assumes signed 16-bit input samples.
|
321 |
*
|
322 |
* @return coefficient shift
|
323 |
*/
|
324 |
static int normalize_samples(AC3EncodeContext *s) |
325 |
{ |
326 |
int v = 14 - log2_tab(s, s->windowed_samples, AC3_WINDOW_SIZE); |
327 |
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); |
328 |
return 9 - v; |
329 |
} |
330 |
|
331 |
|
332 |
/**
|
333 |
* Scale MDCT coefficients to 24-bit fixed-point.
|
334 |
*/
|
335 |
static void scale_coefficients(AC3EncodeContext *s) |
336 |
{ |
337 |
int blk, ch;
|
338 |
|
339 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
340 |
AC3Block *block = &s->blocks[blk]; |
341 |
for (ch = 0; ch < s->channels; ch++) { |
342 |
shift_int32(block->mdct_coef[ch], AC3_MAX_COEFS, |
343 |
block->coeff_shift[ch]); |
344 |
} |
345 |
} |
346 |
} |
347 |
|
348 |
|
349 |
#ifdef TEST
|
350 |
/*************************************************************************/
|
351 |
/* TEST */
|
352 |
|
353 |
#include "libavutil/lfg.h" |
354 |
|
355 |
#define MDCT_NBITS 9 |
356 |
#define MDCT_SAMPLES (1 << MDCT_NBITS) |
357 |
#define FN (MDCT_SAMPLES/4) |
358 |
|
359 |
|
360 |
static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg) |
361 |
{ |
362 |
IComplex in[FN], in1[FN]; |
363 |
int k, n, i;
|
364 |
float sum_re, sum_im, a;
|
365 |
|
366 |
for (i = 0; i < FN; i++) { |
367 |
in[i].re = av_lfg_get(lfg) % 65535 - 32767; |
368 |
in[i].im = av_lfg_get(lfg) % 65535 - 32767; |
369 |
in1[i] = in[i]; |
370 |
} |
371 |
fft(mdct, in, 7);
|
372 |
|
373 |
/* do it by hand */
|
374 |
for (k = 0; k < FN; k++) { |
375 |
sum_re = 0;
|
376 |
sum_im = 0;
|
377 |
for (n = 0; n < FN; n++) { |
378 |
a = -2 * M_PI * (n * k) / FN;
|
379 |
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
380 |
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
381 |
} |
382 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", |
383 |
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
384 |
} |
385 |
} |
386 |
|
387 |
|
388 |
static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg) |
389 |
{ |
390 |
int16_t input[MDCT_SAMPLES]; |
391 |
int32_t output[AC3_MAX_COEFS]; |
392 |
float input1[MDCT_SAMPLES];
|
393 |
float output1[AC3_MAX_COEFS];
|
394 |
float s, a, err, e, emax;
|
395 |
int i, k, n;
|
396 |
|
397 |
for (i = 0; i < MDCT_SAMPLES; i++) { |
398 |
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; |
399 |
input1[i] = input[i]; |
400 |
} |
401 |
|
402 |
mdct512(mdct, output, input); |
403 |
|
404 |
/* do it by hand */
|
405 |
for (k = 0; k < AC3_MAX_COEFS; k++) { |
406 |
s = 0;
|
407 |
for (n = 0; n < MDCT_SAMPLES; n++) { |
408 |
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); |
409 |
s += input1[n] * cos(a); |
410 |
} |
411 |
output1[k] = -2 * s / MDCT_SAMPLES;
|
412 |
} |
413 |
|
414 |
err = 0;
|
415 |
emax = 0;
|
416 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
417 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); |
418 |
e = output[i] - output1[i]; |
419 |
if (e > emax)
|
420 |
emax = e; |
421 |
err += e * e; |
422 |
} |
423 |
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); |
424 |
} |
425 |
|
426 |
|
427 |
int main(void) |
428 |
{ |
429 |
AVLFG lfg; |
430 |
AC3MDCTContext mdct; |
431 |
|
432 |
mdct.avctx = NULL;
|
433 |
av_log_set_level(AV_LOG_DEBUG); |
434 |
mdct_init(&mdct, 9);
|
435 |
|
436 |
fft_test(&mdct, &lfg); |
437 |
mdct_test(&mdct, &lfg); |
438 |
|
439 |
return 0; |
440 |
} |
441 |
#endif /* TEST */ |
442 |
|
443 |
|
444 |
AVCodec ff_ac3_fixed_encoder = { |
445 |
"ac3_fixed",
|
446 |
AVMEDIA_TYPE_AUDIO, |
447 |
CODEC_ID_AC3, |
448 |
sizeof(AC3EncodeContext),
|
449 |
ac3_encode_init, |
450 |
ac3_encode_frame, |
451 |
ac3_encode_close, |
452 |
NULL,
|
453 |
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
454 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
455 |
.channel_layouts = ac3_channel_layouts, |
456 |
}; |