Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ fa6f2751

History | View | Annotate | Download (84 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "avcodec.h"
37
#include "dsputil.h"
38
#include "get_bits.h"
39

    
40
#include "vp3data.h"
41
#include "xiph.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
typedef struct Coeff {
46
    struct Coeff *next;
47
    DCTELEM coeff;
48
    uint8_t index;
49
} Coeff;
50

    
51
//FIXME split things out into their own arrays
52
typedef struct Vp3Fragment {
53
    Coeff *next_coeff;
54
    /* address of first pixel taking into account which plane the fragment
55
     * lives on as well as the plane stride */
56
    int first_pixel;
57
    /* this is the macroblock that the fragment belongs to */
58
    uint16_t macroblock;
59
    uint8_t coding_method;
60
    int8_t motion_x;
61
    int8_t motion_y;
62
    uint8_t qpi;
63
} Vp3Fragment;
64

    
65
#define SB_NOT_CODED        0
66
#define SB_PARTIALLY_CODED  1
67
#define SB_FULLY_CODED      2
68

    
69
#define MODE_INTER_NO_MV      0
70
#define MODE_INTRA            1
71
#define MODE_INTER_PLUS_MV    2
72
#define MODE_INTER_LAST_MV    3
73
#define MODE_INTER_PRIOR_LAST 4
74
#define MODE_USING_GOLDEN     5
75
#define MODE_GOLDEN_MV        6
76
#define MODE_INTER_FOURMV     7
77
#define CODING_MODE_COUNT     8
78

    
79
/* special internal mode */
80
#define MODE_COPY             8
81

    
82
/* There are 6 preset schemes, plus a free-form scheme */
83
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
84
{
85
    /* scheme 1: Last motion vector dominates */
86
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
87
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
88
         MODE_INTRA,            MODE_USING_GOLDEN,
89
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
90

    
91
    /* scheme 2 */
92
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
93
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
94
         MODE_INTRA,            MODE_USING_GOLDEN,
95
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
96

    
97
    /* scheme 3 */
98
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
99
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
100
         MODE_INTRA,            MODE_USING_GOLDEN,
101
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
102

    
103
    /* scheme 4 */
104
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
105
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
106
         MODE_INTRA,            MODE_USING_GOLDEN,
107
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
108

    
109
    /* scheme 5: No motion vector dominates */
110
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
111
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
112
         MODE_INTRA,            MODE_USING_GOLDEN,
113
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
114

    
115
    /* scheme 6 */
116
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
117
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
118
         MODE_INTER_PLUS_MV,    MODE_INTRA,
119
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
120

    
121
};
122

    
123
#define MIN_DEQUANT_VAL 2
124

    
125
typedef struct Vp3DecodeContext {
126
    AVCodecContext *avctx;
127
    int theora, theora_tables;
128
    int version;
129
    int width, height;
130
    AVFrame golden_frame;
131
    AVFrame last_frame;
132
    AVFrame current_frame;
133
    int keyframe;
134
    DSPContext dsp;
135
    int flipped_image;
136

    
137
    int qps[3];
138
    int nqps;
139
    int last_qps[3];
140

    
141
    int superblock_count;
142
    int y_superblock_width;
143
    int y_superblock_height;
144
    int c_superblock_width;
145
    int c_superblock_height;
146
    int u_superblock_start;
147
    int v_superblock_start;
148
    unsigned char *superblock_coding;
149

    
150
    int macroblock_count;
151
    int macroblock_width;
152
    int macroblock_height;
153

    
154
    int fragment_count;
155
    int fragment_width;
156
    int fragment_height;
157

    
158
    Vp3Fragment *all_fragments;
159
    uint8_t *coeff_counts;
160
    Coeff *coeffs;
161
    Coeff *next_coeff;
162
    int fragment_start[3];
163

    
164
    ScanTable scantable;
165

    
166
    /* tables */
167
    uint16_t coded_dc_scale_factor[64];
168
    uint32_t coded_ac_scale_factor[64];
169
    uint8_t base_matrix[384][64];
170
    uint8_t qr_count[2][3];
171
    uint8_t qr_size [2][3][64];
172
    uint16_t qr_base[2][3][64];
173

    
174
    /* this is a list of indexes into the all_fragments array indicating
175
     * which of the fragments are coded */
176
    int *coded_fragment_list;
177
    int coded_fragment_list_index;
178
    int pixel_addresses_initialized;
179

    
180
    VLC dc_vlc[16];
181
    VLC ac_vlc_1[16];
182
    VLC ac_vlc_2[16];
183
    VLC ac_vlc_3[16];
184
    VLC ac_vlc_4[16];
185

    
186
    VLC superblock_run_length_vlc;
187
    VLC fragment_run_length_vlc;
188
    VLC mode_code_vlc;
189
    VLC motion_vector_vlc;
190

    
191
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
192
     * index into them */
193
    DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]);     //<qmat[qpi][is_inter][plane]
194

    
195
    /* This table contains superblock_count * 16 entries. Each set of 16
196
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
197
     * An entry will be -1 to indicate that no entry corresponds to that
198
     * index. */
199
    int *superblock_fragments;
200

    
201
    /* This table contains superblock_count * 4 entries. Each set of 4
202
     * numbers corresponds to the macroblock indexes 0..3 of the superblock.
203
     * An entry will be -1 to indicate that no entry corresponds to that
204
     * index. */
205
    int *superblock_macroblocks;
206

    
207
    /* This table contains macroblock_count * 6 entries. Each set of 6
208
     * numbers corresponds to the fragment indexes 0..5 which comprise
209
     * the macroblock (4 Y fragments and 2 C fragments). */
210
    int *macroblock_fragments;
211
    /* This is an array that indicates how a particular macroblock
212
     * is coded. */
213
    unsigned char *macroblock_coding;
214

    
215
    int first_coded_y_fragment;
216
    int first_coded_c_fragment;
217
    int last_coded_y_fragment;
218
    int last_coded_c_fragment;
219

    
220
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
221
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
222

    
223
    /* Huffman decode */
224
    int hti;
225
    unsigned int hbits;
226
    int entries;
227
    int huff_code_size;
228
    uint16_t huffman_table[80][32][2];
229

    
230
    uint8_t filter_limit_values[64];
231
    DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
232
} Vp3DecodeContext;
233

    
234
/************************************************************************
235
 * VP3 specific functions
236
 ************************************************************************/
237

    
238
/*
239
 * This function sets up all of the various blocks mappings:
240
 * superblocks <-> fragments, macroblocks <-> fragments,
241
 * superblocks <-> macroblocks
242
 *
243
 * Returns 0 is successful; returns 1 if *anything* went wrong.
244
 */
245
static int init_block_mapping(Vp3DecodeContext *s)
246
{
247
    int i, j;
248
    signed int hilbert_walk_mb[4];
249

    
250
    int current_fragment = 0;
251
    int current_width = 0;
252
    int current_height = 0;
253
    int right_edge = 0;
254
    int bottom_edge = 0;
255
    int superblock_row_inc = 0;
256
    int mapping_index = 0;
257

    
258
    int current_macroblock;
259
    int c_fragment;
260

    
261
    static const signed char travel_width[16] = {
262
         1,  1,  0, -1,
263
         0,  0,  1,  0,
264
         1,  0,  1,  0,
265
         0, -1,  0,  1
266
    };
267

    
268
    static const signed char travel_height[16] = {
269
         0,  0,  1,  0,
270
         1,  1,  0, -1,
271
         0,  1,  0, -1,
272
        -1,  0, -1,  0
273
    };
274

    
275
    static const signed char travel_width_mb[4] = {
276
         1,  0,  1,  0
277
    };
278

    
279
    static const signed char travel_height_mb[4] = {
280
         0,  1,  0, -1
281
    };
282

    
283
    hilbert_walk_mb[0] = 1;
284
    hilbert_walk_mb[1] = s->macroblock_width;
285
    hilbert_walk_mb[2] = 1;
286
    hilbert_walk_mb[3] = -s->macroblock_width;
287

    
288
    /* iterate through each superblock (all planes) and map the fragments */
289
    for (i = 0; i < s->superblock_count; i++) {
290
        /* time to re-assign the limits? */
291
        if (i == 0) {
292

    
293
            /* start of Y superblocks */
294
            right_edge = s->fragment_width;
295
            bottom_edge = s->fragment_height;
296
            current_width = -1;
297
            current_height = 0;
298
            superblock_row_inc = 3 * s->fragment_width -
299
                (s->y_superblock_width * 4 - s->fragment_width);
300

    
301
            /* the first operation for this variable is to advance by 1 */
302
            current_fragment = -1;
303

    
304
        } else if (i == s->u_superblock_start) {
305

    
306
            /* start of U superblocks */
307
            right_edge = s->fragment_width / 2;
308
            bottom_edge = s->fragment_height / 2;
309
            current_width = -1;
310
            current_height = 0;
311
            superblock_row_inc = 3 * (s->fragment_width / 2) -
312
                (s->c_superblock_width * 4 - s->fragment_width / 2);
313

    
314
            /* the first operation for this variable is to advance by 1 */
315
            current_fragment = s->fragment_start[1] - 1;
316

    
317
        } else if (i == s->v_superblock_start) {
318

    
319
            /* start of V superblocks */
320
            right_edge = s->fragment_width / 2;
321
            bottom_edge = s->fragment_height / 2;
322
            current_width = -1;
323
            current_height = 0;
324
            superblock_row_inc = 3 * (s->fragment_width / 2) -
325
                (s->c_superblock_width * 4 - s->fragment_width / 2);
326

    
327
            /* the first operation for this variable is to advance by 1 */
328
            current_fragment = s->fragment_start[2] - 1;
329

    
330
        }
331

    
332
        if (current_width >= right_edge - 1) {
333
            /* reset width and move to next superblock row */
334
            current_width = -1;
335
            current_height += 4;
336

    
337
            /* fragment is now at the start of a new superblock row */
338
            current_fragment += superblock_row_inc;
339
        }
340

    
341
        /* iterate through all 16 fragments in a superblock */
342
        for (j = 0; j < 16; j++) {
343
            current_fragment += travel_width[j] + right_edge * travel_height[j];
344
            current_width += travel_width[j];
345
            current_height += travel_height[j];
346

    
347
            /* check if the fragment is in bounds */
348
            if ((current_width < right_edge) &&
349
                (current_height < bottom_edge)) {
350
                s->superblock_fragments[mapping_index] = current_fragment;
351
            } else {
352
                s->superblock_fragments[mapping_index] = -1;
353
            }
354

    
355
            mapping_index++;
356
        }
357
    }
358

    
359
    /* initialize the superblock <-> macroblock mapping; iterate through
360
     * all of the Y plane superblocks to build this mapping */
361
    right_edge = s->macroblock_width;
362
    bottom_edge = s->macroblock_height;
363
    current_width = -1;
364
    current_height = 0;
365
    superblock_row_inc = s->macroblock_width -
366
        (s->y_superblock_width * 2 - s->macroblock_width);
367
    mapping_index = 0;
368
    current_macroblock = -1;
369
    for (i = 0; i < s->u_superblock_start; i++) {
370

    
371
        if (current_width >= right_edge - 1) {
372
            /* reset width and move to next superblock row */
373
            current_width = -1;
374
            current_height += 2;
375

    
376
            /* macroblock is now at the start of a new superblock row */
377
            current_macroblock += superblock_row_inc;
378
        }
379

    
380
        /* iterate through each potential macroblock in the superblock */
381
        for (j = 0; j < 4; j++) {
382
            current_macroblock += hilbert_walk_mb[j];
383
            current_width += travel_width_mb[j];
384
            current_height += travel_height_mb[j];
385

    
386
            /* check if the macroblock is in bounds */
387
            if ((current_width < right_edge) &&
388
                (current_height < bottom_edge)) {
389
                s->superblock_macroblocks[mapping_index] = current_macroblock;
390
            } else {
391
                s->superblock_macroblocks[mapping_index] = -1;
392
            }
393

    
394
            mapping_index++;
395
        }
396
    }
397

    
398
    /* initialize the macroblock <-> fragment mapping */
399
    current_fragment = 0;
400
    current_macroblock = 0;
401
    mapping_index = 0;
402
    for (i = 0; i < s->fragment_height; i += 2) {
403

    
404
        for (j = 0; j < s->fragment_width; j += 2) {
405

    
406
            s->all_fragments[current_fragment].macroblock = current_macroblock;
407
            s->macroblock_fragments[mapping_index++] = current_fragment;
408

    
409
            if (j + 1 < s->fragment_width) {
410
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
411
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
412
            } else
413
                s->macroblock_fragments[mapping_index++] = -1;
414

    
415
            if (i + 1 < s->fragment_height) {
416
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
417
                    current_macroblock;
418
                s->macroblock_fragments[mapping_index++] =
419
                    current_fragment + s->fragment_width;
420
            } else
421
                s->macroblock_fragments[mapping_index++] = -1;
422

    
423
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
424
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
425
                    current_macroblock;
426
                s->macroblock_fragments[mapping_index++] =
427
                    current_fragment + s->fragment_width + 1;
428
            } else
429
                s->macroblock_fragments[mapping_index++] = -1;
430

    
431
            /* C planes */
432
            c_fragment = s->fragment_start[1] +
433
                (i * s->fragment_width / 4) + (j / 2);
434
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
435
            s->macroblock_fragments[mapping_index++] = c_fragment;
436

    
437
            c_fragment = s->fragment_start[2] +
438
                (i * s->fragment_width / 4) + (j / 2);
439
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
440
            s->macroblock_fragments[mapping_index++] = c_fragment;
441

    
442
            if (j + 2 <= s->fragment_width)
443
                current_fragment += 2;
444
            else
445
                current_fragment++;
446
            current_macroblock++;
447
        }
448

    
449
        current_fragment += s->fragment_width;
450
    }
451

    
452
    return 0;  /* successful path out */
453
}
454

    
455
/*
456
 * This function wipes out all of the fragment data.
457
 */
458
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
459
{
460
    int i;
461

    
462
    /* zero out all of the fragment information */
463
    s->coded_fragment_list_index = 0;
464
    for (i = 0; i < s->fragment_count; i++) {
465
        s->coeff_counts[i] = 0;
466
        s->all_fragments[i].motion_x = 127;
467
        s->all_fragments[i].motion_y = 127;
468
        s->all_fragments[i].next_coeff= NULL;
469
        s->all_fragments[i].qpi = 0;
470
        s->coeffs[i].index=
471
        s->coeffs[i].coeff=0;
472
        s->coeffs[i].next= NULL;
473
    }
474
}
475

    
476
/*
477
 * This function sets up the dequantization tables used for a particular
478
 * frame.
479
 */
480
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
481
{
482
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
483
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
484
    int i, plane, inter, qri, bmi, bmj, qistart;
485

    
486
    for(inter=0; inter<2; inter++){
487
        for(plane=0; plane<3; plane++){
488
            int sum=0;
489
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
490
                sum+= s->qr_size[inter][plane][qri];
491
                if(s->qps[qpi] <= sum)
492
                    break;
493
            }
494
            qistart= sum - s->qr_size[inter][plane][qri];
495
            bmi= s->qr_base[inter][plane][qri  ];
496
            bmj= s->qr_base[inter][plane][qri+1];
497
            for(i=0; i<64; i++){
498
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
499
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
500
                            + s->qr_size[inter][plane][qri])
501
                           / (2*s->qr_size[inter][plane][qri]);
502

    
503
                int qmin= 8<<(inter + !i);
504
                int qscale= i ? ac_scale_factor : dc_scale_factor;
505

    
506
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
507
            }
508
            // all DC coefficients use the same quant so as not to interfere with DC prediction
509
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
510
        }
511
    }
512

    
513
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
514
}
515

    
516
/*
517
 * This function initializes the loop filter boundary limits if the frame's
518
 * quality index is different from the previous frame's.
519
 *
520
 * The filter_limit_values may not be larger than 127.
521
 */
522
static void init_loop_filter(Vp3DecodeContext *s)
523
{
524
    int *bounding_values= s->bounding_values_array+127;
525
    int filter_limit;
526
    int x;
527
    int value;
528

    
529
    filter_limit = s->filter_limit_values[s->qps[0]];
530

    
531
    /* set up the bounding values */
532
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
533
    for (x = 0; x < filter_limit; x++) {
534
        bounding_values[-x] = -x;
535
        bounding_values[x] = x;
536
    }
537
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
538
        bounding_values[ x] =  value;
539
        bounding_values[-x] = -value;
540
    }
541
    if (value)
542
        bounding_values[128] = value;
543
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
544
}
545

    
546
/*
547
 * This function unpacks all of the superblock/macroblock/fragment coding
548
 * information from the bitstream.
549
 */
550
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
551
{
552
    int bit = 0;
553
    int current_superblock = 0;
554
    int current_run = 0;
555
    int decode_fully_flags = 0;
556
    int decode_partial_blocks = 0;
557
    int first_c_fragment_seen;
558

    
559
    int i, j;
560
    int current_fragment;
561

    
562
    if (s->keyframe) {
563
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
564

    
565
    } else {
566

    
567
        /* unpack the list of partially-coded superblocks */
568
        bit = get_bits1(gb);
569
        /* toggle the bit because as soon as the first run length is
570
         * fetched the bit will be toggled again */
571
        bit ^= 1;
572
        while (current_superblock < s->superblock_count) {
573
            if (current_run-- == 0) {
574
                bit ^= 1;
575
                current_run = get_vlc2(gb,
576
                    s->superblock_run_length_vlc.table, 6, 2);
577
                if (current_run == 33)
578
                    current_run += get_bits(gb, 12);
579

    
580
                /* if any of the superblocks are not partially coded, flag
581
                 * a boolean to decode the list of fully-coded superblocks */
582
                if (bit == 0) {
583
                    decode_fully_flags = 1;
584
                } else {
585

    
586
                    /* make a note of the fact that there are partially coded
587
                     * superblocks */
588
                    decode_partial_blocks = 1;
589
                }
590
            }
591
            s->superblock_coding[current_superblock++] = bit;
592
        }
593

    
594
        /* unpack the list of fully coded superblocks if any of the blocks were
595
         * not marked as partially coded in the previous step */
596
        if (decode_fully_flags) {
597

    
598
            current_superblock = 0;
599
            current_run = 0;
600
            bit = get_bits1(gb);
601
            /* toggle the bit because as soon as the first run length is
602
             * fetched the bit will be toggled again */
603
            bit ^= 1;
604
            while (current_superblock < s->superblock_count) {
605

    
606
                /* skip any superblocks already marked as partially coded */
607
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
608

    
609
                    if (current_run-- == 0) {
610
                        bit ^= 1;
611
                        current_run = get_vlc2(gb,
612
                            s->superblock_run_length_vlc.table, 6, 2);
613
                        if (current_run == 33)
614
                            current_run += get_bits(gb, 12);
615
                    }
616
                    s->superblock_coding[current_superblock] = 2*bit;
617
                }
618
                current_superblock++;
619
            }
620
        }
621

    
622
        /* if there were partial blocks, initialize bitstream for
623
         * unpacking fragment codings */
624
        if (decode_partial_blocks) {
625

    
626
            current_run = 0;
627
            bit = get_bits1(gb);
628
            /* toggle the bit because as soon as the first run length is
629
             * fetched the bit will be toggled again */
630
            bit ^= 1;
631
        }
632
    }
633

    
634
    /* figure out which fragments are coded; iterate through each
635
     * superblock (all planes) */
636
    s->coded_fragment_list_index = 0;
637
    s->next_coeff= s->coeffs + s->fragment_count;
638
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
639
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
640
    first_c_fragment_seen = 0;
641
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
642
    for (i = 0; i < s->superblock_count; i++) {
643

    
644
        /* iterate through all 16 fragments in a superblock */
645
        for (j = 0; j < 16; j++) {
646

    
647
            /* if the fragment is in bounds, check its coding status */
648
            current_fragment = s->superblock_fragments[i * 16 + j];
649
            if (current_fragment >= s->fragment_count) {
650
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
651
                    current_fragment, s->fragment_count);
652
                return 1;
653
            }
654
            if (current_fragment != -1) {
655
                if (s->superblock_coding[i] == SB_NOT_CODED) {
656

    
657
                    /* copy all the fragments from the prior frame */
658
                    s->all_fragments[current_fragment].coding_method =
659
                        MODE_COPY;
660

    
661
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
662

    
663
                    /* fragment may or may not be coded; this is the case
664
                     * that cares about the fragment coding runs */
665
                    if (current_run-- == 0) {
666
                        bit ^= 1;
667
                        current_run = get_vlc2(gb,
668
                            s->fragment_run_length_vlc.table, 5, 2);
669
                    }
670

    
671
                    if (bit) {
672
                        /* default mode; actual mode will be decoded in
673
                         * the next phase */
674
                        s->all_fragments[current_fragment].coding_method =
675
                            MODE_INTER_NO_MV;
676
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
677
                        s->coded_fragment_list[s->coded_fragment_list_index] =
678
                            current_fragment;
679
                        if ((current_fragment >= s->fragment_start[1]) &&
680
                            (s->last_coded_y_fragment == -1) &&
681
                            (!first_c_fragment_seen)) {
682
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
683
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
684
                            first_c_fragment_seen = 1;
685
                        }
686
                        s->coded_fragment_list_index++;
687
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
688
                    } else {
689
                        /* not coded; copy this fragment from the prior frame */
690
                        s->all_fragments[current_fragment].coding_method =
691
                            MODE_COPY;
692
                    }
693

    
694
                } else {
695

    
696
                    /* fragments are fully coded in this superblock; actual
697
                     * coding will be determined in next step */
698
                    s->all_fragments[current_fragment].coding_method =
699
                        MODE_INTER_NO_MV;
700
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
701
                    s->coded_fragment_list[s->coded_fragment_list_index] =
702
                        current_fragment;
703
                    if ((current_fragment >= s->fragment_start[1]) &&
704
                        (s->last_coded_y_fragment == -1) &&
705
                        (!first_c_fragment_seen)) {
706
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
707
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
708
                        first_c_fragment_seen = 1;
709
                    }
710
                    s->coded_fragment_list_index++;
711
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
712
                }
713
            }
714
        }
715
    }
716

    
717
    if (!first_c_fragment_seen)
718
        /* only Y fragments coded in this frame */
719
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
720
    else
721
        /* end the list of coded C fragments */
722
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
723

    
724
    return 0;
725
}
726

    
727
/*
728
 * This function unpacks all the coding mode data for individual macroblocks
729
 * from the bitstream.
730
 */
731
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
732
{
733
    int i, j, k;
734
    int scheme;
735
    int current_macroblock;
736
    int current_fragment;
737
    int coding_mode;
738
    int custom_mode_alphabet[CODING_MODE_COUNT];
739

    
740
    if (s->keyframe) {
741
        for (i = 0; i < s->fragment_count; i++)
742
            s->all_fragments[i].coding_method = MODE_INTRA;
743

    
744
    } else {
745

    
746
        /* fetch the mode coding scheme for this frame */
747
        scheme = get_bits(gb, 3);
748

    
749
        /* is it a custom coding scheme? */
750
        if (scheme == 0) {
751
            for (i = 0; i < 8; i++)
752
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
753
            for (i = 0; i < 8; i++)
754
                custom_mode_alphabet[get_bits(gb, 3)] = i;
755
        }
756

    
757
        /* iterate through all of the macroblocks that contain 1 or more
758
         * coded fragments */
759
        for (i = 0; i < s->u_superblock_start; i++) {
760

    
761
            for (j = 0; j < 4; j++) {
762
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
763
                if ((current_macroblock == -1) ||
764
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
765
                    continue;
766
                if (current_macroblock >= s->macroblock_count) {
767
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
768
                        current_macroblock, s->macroblock_count);
769
                    return 1;
770
                }
771

    
772
                /* mode 7 means get 3 bits for each coding mode */
773
                if (scheme == 7)
774
                    coding_mode = get_bits(gb, 3);
775
                else if(scheme == 0)
776
                    coding_mode = custom_mode_alphabet
777
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
778
                else
779
                    coding_mode = ModeAlphabet[scheme-1]
780
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
781

    
782
                s->macroblock_coding[current_macroblock] = coding_mode;
783
                for (k = 0; k < 6; k++) {
784
                    current_fragment =
785
                        s->macroblock_fragments[current_macroblock * 6 + k];
786
                    if (current_fragment == -1)
787
                        continue;
788
                    if (current_fragment >= s->fragment_count) {
789
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
790
                            current_fragment, s->fragment_count);
791
                        return 1;
792
                    }
793
                    if (s->all_fragments[current_fragment].coding_method !=
794
                        MODE_COPY)
795
                        s->all_fragments[current_fragment].coding_method =
796
                            coding_mode;
797
                }
798
            }
799
        }
800
    }
801

    
802
    return 0;
803
}
804

    
805
/*
806
 * This function unpacks all the motion vectors for the individual
807
 * macroblocks from the bitstream.
808
 */
809
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
810
{
811
    int i, j, k, l;
812
    int coding_mode;
813
    int motion_x[6];
814
    int motion_y[6];
815
    int last_motion_x = 0;
816
    int last_motion_y = 0;
817
    int prior_last_motion_x = 0;
818
    int prior_last_motion_y = 0;
819
    int current_macroblock;
820
    int current_fragment;
821

    
822
    if (s->keyframe)
823
        return 0;
824

    
825
    memset(motion_x, 0, 6 * sizeof(int));
826
    memset(motion_y, 0, 6 * sizeof(int));
827

    
828
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
829
    coding_mode = get_bits1(gb);
830

    
831
    /* iterate through all of the macroblocks that contain 1 or more
832
     * coded fragments */
833
    for (i = 0; i < s->u_superblock_start; i++) {
834

    
835
        for (j = 0; j < 4; j++) {
836
            current_macroblock = s->superblock_macroblocks[i * 4 + j];
837
            if ((current_macroblock == -1) ||
838
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
839
                continue;
840
            if (current_macroblock >= s->macroblock_count) {
841
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
842
                    current_macroblock, s->macroblock_count);
843
                return 1;
844
            }
845

    
846
            current_fragment = s->macroblock_fragments[current_macroblock * 6];
847
            if (current_fragment >= s->fragment_count) {
848
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
849
                    current_fragment, s->fragment_count);
850
                return 1;
851
            }
852
            switch (s->macroblock_coding[current_macroblock]) {
853

    
854
            case MODE_INTER_PLUS_MV:
855
            case MODE_GOLDEN_MV:
856
                /* all 6 fragments use the same motion vector */
857
                if (coding_mode == 0) {
858
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
859
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
860
                } else {
861
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
862
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
863
                }
864

    
865
                for (k = 1; k < 6; k++) {
866
                    motion_x[k] = motion_x[0];
867
                    motion_y[k] = motion_y[0];
868
                }
869

    
870
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
871
                if (s->macroblock_coding[current_macroblock] ==
872
                    MODE_INTER_PLUS_MV) {
873
                    prior_last_motion_x = last_motion_x;
874
                    prior_last_motion_y = last_motion_y;
875
                    last_motion_x = motion_x[0];
876
                    last_motion_y = motion_y[0];
877
                }
878
                break;
879

    
880
            case MODE_INTER_FOURMV:
881
                /* vector maintenance */
882
                prior_last_motion_x = last_motion_x;
883
                prior_last_motion_y = last_motion_y;
884

    
885
                /* fetch 4 vectors from the bitstream, one for each
886
                 * Y fragment, then average for the C fragment vectors */
887
                motion_x[4] = motion_y[4] = 0;
888
                for (k = 0; k < 4; k++) {
889
                    for (l = 0; l < s->coded_fragment_list_index; l++)
890
                        if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
891
                            break;
892
                    if (l < s->coded_fragment_list_index) {
893
                        if (coding_mode == 0) {
894
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
895
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
896
                        } else {
897
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
898
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
899
                        }
900
                        last_motion_x = motion_x[k];
901
                        last_motion_y = motion_y[k];
902
                    } else {
903
                        motion_x[k] = 0;
904
                        motion_y[k] = 0;
905
                    }
906
                    motion_x[4] += motion_x[k];
907
                    motion_y[4] += motion_y[k];
908
                }
909

    
910
                motion_x[5]=
911
                motion_x[4]= RSHIFT(motion_x[4], 2);
912
                motion_y[5]=
913
                motion_y[4]= RSHIFT(motion_y[4], 2);
914
                break;
915

    
916
            case MODE_INTER_LAST_MV:
917
                /* all 6 fragments use the last motion vector */
918
                motion_x[0] = last_motion_x;
919
                motion_y[0] = last_motion_y;
920
                for (k = 1; k < 6; k++) {
921
                    motion_x[k] = motion_x[0];
922
                    motion_y[k] = motion_y[0];
923
                }
924

    
925
                /* no vector maintenance (last vector remains the
926
                 * last vector) */
927
                break;
928

    
929
            case MODE_INTER_PRIOR_LAST:
930
                /* all 6 fragments use the motion vector prior to the
931
                 * last motion vector */
932
                motion_x[0] = prior_last_motion_x;
933
                motion_y[0] = prior_last_motion_y;
934
                for (k = 1; k < 6; k++) {
935
                    motion_x[k] = motion_x[0];
936
                    motion_y[k] = motion_y[0];
937
                }
938

    
939
                /* vector maintenance */
940
                prior_last_motion_x = last_motion_x;
941
                prior_last_motion_y = last_motion_y;
942
                last_motion_x = motion_x[0];
943
                last_motion_y = motion_y[0];
944
                break;
945

    
946
            default:
947
                /* covers intra, inter without MV, golden without MV */
948
                memset(motion_x, 0, 6 * sizeof(int));
949
                memset(motion_y, 0, 6 * sizeof(int));
950

    
951
                /* no vector maintenance */
952
                break;
953
            }
954

    
955
            /* assign the motion vectors to the correct fragments */
956
            for (k = 0; k < 6; k++) {
957
                current_fragment =
958
                    s->macroblock_fragments[current_macroblock * 6 + k];
959
                if (current_fragment == -1)
960
                    continue;
961
                if (current_fragment >= s->fragment_count) {
962
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
963
                        current_fragment, s->fragment_count);
964
                    return 1;
965
                }
966
                s->all_fragments[current_fragment].motion_x = motion_x[k];
967
                s->all_fragments[current_fragment].motion_y = motion_y[k];
968
            }
969
        }
970
    }
971

    
972
    return 0;
973
}
974

    
975
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
976
{
977
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
978
    int num_blocks = s->coded_fragment_list_index;
979

    
980
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
981
        i = blocks_decoded = num_blocks_at_qpi = 0;
982

    
983
        bit = get_bits1(gb);
984

    
985
        do {
986
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
987
            if (run_length == 34)
988
                run_length += get_bits(gb, 12);
989
            blocks_decoded += run_length;
990

    
991
            if (!bit)
992
                num_blocks_at_qpi += run_length;
993

    
994
            for (j = 0; j < run_length; i++) {
995
                if (i > s->coded_fragment_list_index)
996
                    return -1;
997

    
998
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
999
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1000
                    j++;
1001
                }
1002
            }
1003

    
1004
            if (run_length == 4129)
1005
                bit = get_bits1(gb);
1006
            else
1007
                bit ^= 1;
1008
        } while (blocks_decoded < num_blocks);
1009

    
1010
        num_blocks -= num_blocks_at_qpi;
1011
    }
1012

    
1013
    return 0;
1014
}
1015

    
1016
/*
1017
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1018
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1019
 * data. This function unpacks all the VLCs for either the Y plane or both
1020
 * C planes, and is called for DC coefficients or different AC coefficient
1021
 * levels (since different coefficient types require different VLC tables.
1022
 *
1023
 * This function returns a residual eob run. E.g, if a particular token gave
1024
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1025
 * left in the current fragment range, 3 would be returned so that it could
1026
 * be passed into the next call to this same function.
1027
 */
1028
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1029
                        VLC *table, int coeff_index,
1030
                        int first_fragment, int last_fragment,
1031
                        int eob_run)
1032
{
1033
    int i;
1034
    int token;
1035
    int zero_run = 0;
1036
    DCTELEM coeff = 0;
1037
    Vp3Fragment *fragment;
1038
    int bits_to_get;
1039

    
1040
    /* local references to structure members to avoid repeated deferences */
1041
    uint8_t *perm= s->scantable.permutated;
1042
    int *coded_fragment_list = s->coded_fragment_list;
1043
    Vp3Fragment *all_fragments = s->all_fragments;
1044
    uint8_t *coeff_counts = s->coeff_counts;
1045
    VLC_TYPE (*vlc_table)[2] = table->table;
1046

    
1047
    if ((first_fragment >= s->fragment_count) ||
1048
        (last_fragment >= s->fragment_count)) {
1049

    
1050
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1051
            first_fragment, last_fragment);
1052
        return 0;
1053
    }
1054

    
1055
    for (i = first_fragment; i <= last_fragment; i++) {
1056
        int fragment_num = coded_fragment_list[i];
1057

    
1058
        if (coeff_counts[fragment_num] > coeff_index)
1059
            continue;
1060
        fragment = &all_fragments[fragment_num];
1061

    
1062
        if (!eob_run) {
1063
            /* decode a VLC into a token */
1064
            token = get_vlc2(gb, vlc_table, 5, 3);
1065
            /* use the token to get a zero run, a coefficient, and an eob run */
1066
            if (token <= 6) {
1067
                eob_run = eob_run_base[token];
1068
                if (eob_run_get_bits[token])
1069
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1070
                coeff = zero_run = 0;
1071
            } else {
1072
                bits_to_get = coeff_get_bits[token];
1073
                if (bits_to_get)
1074
                    bits_to_get = get_bits(gb, bits_to_get);
1075
                coeff = coeff_tables[token][bits_to_get];
1076

    
1077
                zero_run = zero_run_base[token];
1078
                if (zero_run_get_bits[token])
1079
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1080
            }
1081
        }
1082

    
1083
        if (!eob_run) {
1084
            coeff_counts[fragment_num] += zero_run;
1085
            if (coeff_counts[fragment_num] < 64){
1086
                fragment->next_coeff->coeff= coeff;
1087
                fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1088
                fragment->next_coeff->next= s->next_coeff;
1089
                s->next_coeff->next=NULL;
1090
                fragment->next_coeff= s->next_coeff++;
1091
            }
1092
        } else {
1093
            coeff_counts[fragment_num] |= 128;
1094
            eob_run--;
1095
        }
1096
    }
1097

    
1098
    return eob_run;
1099
}
1100

    
1101
static void reverse_dc_prediction(Vp3DecodeContext *s,
1102
                                  int first_fragment,
1103
                                  int fragment_width,
1104
                                  int fragment_height);
1105
/*
1106
 * This function unpacks all of the DCT coefficient data from the
1107
 * bitstream.
1108
 */
1109
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1110
{
1111
    int i;
1112
    int dc_y_table;
1113
    int dc_c_table;
1114
    int ac_y_table;
1115
    int ac_c_table;
1116
    int residual_eob_run = 0;
1117

    
1118
    /* fetch the DC table indexes */
1119
    dc_y_table = get_bits(gb, 4);
1120
    dc_c_table = get_bits(gb, 4);
1121

    
1122
    /* unpack the Y plane DC coefficients */
1123
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1124
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1125

    
1126
    /* reverse prediction of the Y-plane DC coefficients */
1127
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1128

    
1129
    /* unpack the C plane DC coefficients */
1130
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1131
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1132

    
1133
    /* reverse prediction of the C-plane DC coefficients */
1134
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1135
    {
1136
        reverse_dc_prediction(s, s->fragment_start[1],
1137
            s->fragment_width / 2, s->fragment_height / 2);
1138
        reverse_dc_prediction(s, s->fragment_start[2],
1139
            s->fragment_width / 2, s->fragment_height / 2);
1140
    }
1141

    
1142
    /* fetch the AC table indexes */
1143
    ac_y_table = get_bits(gb, 4);
1144
    ac_c_table = get_bits(gb, 4);
1145

    
1146
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1147
    for (i = 1; i <= 5; i++) {
1148
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1149
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1150

    
1151
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1152
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1153
    }
1154

    
1155
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1156
    for (i = 6; i <= 14; i++) {
1157
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1158
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1159

    
1160
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1161
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1162
    }
1163

    
1164
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1165
    for (i = 15; i <= 27; i++) {
1166
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1167
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1168

    
1169
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1170
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1171
    }
1172

    
1173
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1174
    for (i = 28; i <= 63; i++) {
1175
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1176
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1177

    
1178
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1179
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1180
    }
1181

    
1182
    return 0;
1183
}
1184

    
1185
/*
1186
 * This function reverses the DC prediction for each coded fragment in
1187
 * the frame. Much of this function is adapted directly from the original
1188
 * VP3 source code.
1189
 */
1190
#define COMPATIBLE_FRAME(x) \
1191
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1192
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1193
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1194

    
1195
static void reverse_dc_prediction(Vp3DecodeContext *s,
1196
                                  int first_fragment,
1197
                                  int fragment_width,
1198
                                  int fragment_height)
1199
{
1200

    
1201
#define PUL 8
1202
#define PU 4
1203
#define PUR 2
1204
#define PL 1
1205

    
1206
    int x, y;
1207
    int i = first_fragment;
1208

    
1209
    int predicted_dc;
1210

    
1211
    /* DC values for the left, up-left, up, and up-right fragments */
1212
    int vl, vul, vu, vur;
1213

    
1214
    /* indexes for the left, up-left, up, and up-right fragments */
1215
    int l, ul, u, ur;
1216

    
1217
    /*
1218
     * The 6 fields mean:
1219
     *   0: up-left multiplier
1220
     *   1: up multiplier
1221
     *   2: up-right multiplier
1222
     *   3: left multiplier
1223
     */
1224
    static const int predictor_transform[16][4] = {
1225
        {  0,  0,  0,  0},
1226
        {  0,  0,  0,128},        // PL
1227
        {  0,  0,128,  0},        // PUR
1228
        {  0,  0, 53, 75},        // PUR|PL
1229
        {  0,128,  0,  0},        // PU
1230
        {  0, 64,  0, 64},        // PU|PL
1231
        {  0,128,  0,  0},        // PU|PUR
1232
        {  0,  0, 53, 75},        // PU|PUR|PL
1233
        {128,  0,  0,  0},        // PUL
1234
        {  0,  0,  0,128},        // PUL|PL
1235
        { 64,  0, 64,  0},        // PUL|PUR
1236
        {  0,  0, 53, 75},        // PUL|PUR|PL
1237
        {  0,128,  0,  0},        // PUL|PU
1238
       {-104,116,  0,116},        // PUL|PU|PL
1239
        { 24, 80, 24,  0},        // PUL|PU|PUR
1240
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1241
    };
1242

    
1243
    /* This table shows which types of blocks can use other blocks for
1244
     * prediction. For example, INTRA is the only mode in this table to
1245
     * have a frame number of 0. That means INTRA blocks can only predict
1246
     * from other INTRA blocks. There are 2 golden frame coding types;
1247
     * blocks encoding in these modes can only predict from other blocks
1248
     * that were encoded with these 1 of these 2 modes. */
1249
    static const unsigned char compatible_frame[8] = {
1250
        1,    /* MODE_INTER_NO_MV */
1251
        0,    /* MODE_INTRA */
1252
        1,    /* MODE_INTER_PLUS_MV */
1253
        1,    /* MODE_INTER_LAST_MV */
1254
        1,    /* MODE_INTER_PRIOR_MV */
1255
        2,    /* MODE_USING_GOLDEN */
1256
        2,    /* MODE_GOLDEN_MV */
1257
        1     /* MODE_INTER_FOUR_MV */
1258
    };
1259
    int current_frame_type;
1260

    
1261
    /* there is a last DC predictor for each of the 3 frame types */
1262
    short last_dc[3];
1263

    
1264
    int transform = 0;
1265

    
1266
    vul = vu = vur = vl = 0;
1267
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1268

    
1269
    /* for each fragment row... */
1270
    for (y = 0; y < fragment_height; y++) {
1271

    
1272
        /* for each fragment in a row... */
1273
        for (x = 0; x < fragment_width; x++, i++) {
1274

    
1275
            /* reverse prediction if this block was coded */
1276
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1277

    
1278
                current_frame_type =
1279
                    compatible_frame[s->all_fragments[i].coding_method];
1280

    
1281
                transform= 0;
1282
                if(x){
1283
                    l= i-1;
1284
                    vl = DC_COEFF(l);
1285
                    if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1286
                        transform |= PL;
1287
                }
1288
                if(y){
1289
                    u= i-fragment_width;
1290
                    vu = DC_COEFF(u);
1291
                    if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1292
                        transform |= PU;
1293
                    if(x){
1294
                        ul= i-fragment_width-1;
1295
                        vul = DC_COEFF(ul);
1296
                        if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1297
                            transform |= PUL;
1298
                    }
1299
                    if(x + 1 < fragment_width){
1300
                        ur= i-fragment_width+1;
1301
                        vur = DC_COEFF(ur);
1302
                        if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1303
                            transform |= PUR;
1304
                    }
1305
                }
1306

    
1307
                if (transform == 0) {
1308

    
1309
                    /* if there were no fragments to predict from, use last
1310
                     * DC saved */
1311
                    predicted_dc = last_dc[current_frame_type];
1312
                } else {
1313

    
1314
                    /* apply the appropriate predictor transform */
1315
                    predicted_dc =
1316
                        (predictor_transform[transform][0] * vul) +
1317
                        (predictor_transform[transform][1] * vu) +
1318
                        (predictor_transform[transform][2] * vur) +
1319
                        (predictor_transform[transform][3] * vl);
1320

    
1321
                    predicted_dc /= 128;
1322

    
1323
                    /* check for outranging on the [ul u l] and
1324
                     * [ul u ur l] predictors */
1325
                    if ((transform == 13) || (transform == 15)) {
1326
                        if (FFABS(predicted_dc - vu) > 128)
1327
                            predicted_dc = vu;
1328
                        else if (FFABS(predicted_dc - vl) > 128)
1329
                            predicted_dc = vl;
1330
                        else if (FFABS(predicted_dc - vul) > 128)
1331
                            predicted_dc = vul;
1332
                    }
1333
                }
1334

    
1335
                /* at long last, apply the predictor */
1336
                if(s->coeffs[i].index){
1337
                    *s->next_coeff= s->coeffs[i];
1338
                    s->coeffs[i].index=0;
1339
                    s->coeffs[i].coeff=0;
1340
                    s->coeffs[i].next= s->next_coeff++;
1341
                }
1342
                s->coeffs[i].coeff += predicted_dc;
1343
                /* save the DC */
1344
                last_dc[current_frame_type] = DC_COEFF(i);
1345
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1346
                    s->coeff_counts[i]= 129;
1347
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1348
                    s->coeffs[i].next= s->next_coeff;
1349
                    (s->next_coeff++)->next=NULL;
1350
                }
1351
            }
1352
        }
1353
    }
1354
}
1355

    
1356
/*
1357
 * Perform the final rendering for a particular slice of data.
1358
 * The slice number ranges from 0..(macroblock_height - 1).
1359
 */
1360
static void render_slice(Vp3DecodeContext *s, int slice)
1361
{
1362
    int x;
1363
    int16_t *dequantizer;
1364
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1365
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1366
    int motion_halfpel_index;
1367
    uint8_t *motion_source;
1368
    int plane;
1369
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1370

    
1371
    if (slice >= s->macroblock_height)
1372
        return;
1373

    
1374
    for (plane = 0; plane < 3; plane++) {
1375
        uint8_t *output_plane = s->current_frame.data    [plane];
1376
        uint8_t *  last_plane = s->   last_frame.data    [plane];
1377
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
1378
        int stride            = s->current_frame.linesize[plane];
1379
        int plane_width       = s->width  >> !!plane;
1380
        int plane_height      = s->height >> !!plane;
1381
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1382
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1383
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1384

    
1385
        if (!s->flipped_image) stride = -stride;
1386

    
1387

    
1388
        if(FFABS(stride) > 2048)
1389
            return; //various tables are fixed size
1390

    
1391
        /* for each fragment row in the slice (both of them)... */
1392
        for (; y < slice_height; y += 8) {
1393

    
1394
            /* for each fragment in a row... */
1395
            for (x = 0; x < plane_width; x += 8, i++) {
1396

    
1397
                if ((i < 0) || (i >= s->fragment_count)) {
1398
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1399
                    return;
1400
                }
1401

    
1402
                /* transform if this block was coded */
1403
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1404
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1405

    
1406
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1407
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1408
                        motion_source= golden_plane;
1409
                    else
1410
                        motion_source= last_plane;
1411

    
1412
                    motion_source += s->all_fragments[i].first_pixel;
1413
                    motion_halfpel_index = 0;
1414

    
1415
                    /* sort out the motion vector if this fragment is coded
1416
                     * using a motion vector method */
1417
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1418
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1419
                        int src_x, src_y;
1420
                        motion_x = s->all_fragments[i].motion_x;
1421
                        motion_y = s->all_fragments[i].motion_y;
1422
                        if(plane){
1423
                            motion_x= (motion_x>>1) | (motion_x&1);
1424
                            motion_y= (motion_y>>1) | (motion_y&1);
1425
                        }
1426

    
1427
                        src_x= (motion_x>>1) + x;
1428
                        src_y= (motion_y>>1) + y;
1429
                        if ((motion_x == 127) || (motion_y == 127))
1430
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1431

    
1432
                        motion_halfpel_index = motion_x & 0x01;
1433
                        motion_source += (motion_x >> 1);
1434

    
1435
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1436
                        motion_source += ((motion_y >> 1) * stride);
1437

    
1438
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1439
                            uint8_t *temp= s->edge_emu_buffer;
1440
                            if(stride<0) temp -= 9*stride;
1441
                            else temp += 9*stride;
1442

    
1443
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1444
                            motion_source= temp;
1445
                        }
1446
                    }
1447

    
1448

    
1449
                    /* first, take care of copying a block from either the
1450
                     * previous or the golden frame */
1451
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1452
                        /* Note, it is possible to implement all MC cases with
1453
                           put_no_rnd_pixels_l2 which would look more like the
1454
                           VP3 source but this would be slower as
1455
                           put_no_rnd_pixels_tab is better optimzed */
1456
                        if(motion_halfpel_index != 3){
1457
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1458
                                output_plane + s->all_fragments[i].first_pixel,
1459
                                motion_source, stride, 8);
1460
                        }else{
1461
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1462
                            s->dsp.put_no_rnd_pixels_l2[1](
1463
                                output_plane + s->all_fragments[i].first_pixel,
1464
                                motion_source - d,
1465
                                motion_source + stride + 1 + d,
1466
                                stride, 8);
1467
                        }
1468
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1469
                    }else{
1470
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1471
                    }
1472

    
1473
                    /* dequantize the DCT coefficients */
1474
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1475
                        Coeff *coeff= s->coeffs + i;
1476
                        s->dsp.clear_block(block);
1477
                        while(coeff->next){
1478
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1479
                            coeff= coeff->next;
1480
                        }
1481
                    }else{
1482
                        Coeff *coeff= s->coeffs + i;
1483
                        s->dsp.clear_block(block);
1484
                        while(coeff->next){
1485
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1486
                            coeff= coeff->next;
1487
                        }
1488
                    }
1489

    
1490
                    /* invert DCT and place (or add) in final output */
1491

    
1492
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1493
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1494
                            block[0] += 128<<3;
1495
                        s->dsp.idct_put(
1496
                            output_plane + s->all_fragments[i].first_pixel,
1497
                            stride,
1498
                            block);
1499
                    } else {
1500
                        s->dsp.idct_add(
1501
                            output_plane + s->all_fragments[i].first_pixel,
1502
                            stride,
1503
                            block);
1504
                    }
1505
                } else {
1506

    
1507
                    /* copy directly from the previous frame */
1508
                    s->dsp.put_pixels_tab[1][0](
1509
                        output_plane + s->all_fragments[i].first_pixel,
1510
                        last_plane + s->all_fragments[i].first_pixel,
1511
                        stride, 8);
1512

    
1513
                }
1514
#if 0
1515
                /* perform the left edge filter if:
1516
                 *   - the fragment is not on the left column
1517
                 *   - the fragment is coded in this frame
1518
                 *   - the fragment is not coded in this frame but the left
1519
                 *     fragment is coded in this frame (this is done instead
1520
                 *     of a right edge filter when rendering the left fragment
1521
                 *     since this fragment is not available yet) */
1522
                if ((x > 0) &&
1523
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1524
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1525
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1526
                    horizontal_filter(
1527
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1528
                        -stride, s->bounding_values_array + 127);
1529
                }
1530

1531
                /* perform the top edge filter if:
1532
                 *   - the fragment is not on the top row
1533
                 *   - the fragment is coded in this frame
1534
                 *   - the fragment is not coded in this frame but the above
1535
                 *     fragment is coded in this frame (this is done instead
1536
                 *     of a bottom edge filter when rendering the above
1537
                 *     fragment since this fragment is not available yet) */
1538
                if ((y > 0) &&
1539
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1540
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1541
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1542
                    vertical_filter(
1543
                        output_plane + s->all_fragments[i].first_pixel - stride,
1544
                        -stride, s->bounding_values_array + 127);
1545
                }
1546
#endif
1547
            }
1548
        }
1549
    }
1550

    
1551
     /* this looks like a good place for slice dispatch... */
1552
     /* algorithm:
1553
      *   if (slice == s->macroblock_height - 1)
1554
      *     dispatch (both last slice & 2nd-to-last slice);
1555
      *   else if (slice > 0)
1556
      *     dispatch (slice - 1);
1557
      */
1558

    
1559
    emms_c();
1560
}
1561

    
1562
static void apply_loop_filter(Vp3DecodeContext *s)
1563
{
1564
    int plane;
1565
    int x, y;
1566
    int *bounding_values= s->bounding_values_array+127;
1567

    
1568
#if 0
1569
    int bounding_values_array[256];
1570
    int filter_limit;
1571

1572
    /* find the right loop limit value */
1573
    for (x = 63; x >= 0; x--) {
1574
        if (vp31_ac_scale_factor[x] >= s->quality_index)
1575
            break;
1576
    }
1577
    filter_limit = vp31_filter_limit_values[s->quality_index];
1578

1579
    /* set up the bounding values */
1580
    memset(bounding_values_array, 0, 256 * sizeof(int));
1581
    for (x = 0; x < filter_limit; x++) {
1582
        bounding_values[-x - filter_limit] = -filter_limit + x;
1583
        bounding_values[-x] = -x;
1584
        bounding_values[x] = x;
1585
        bounding_values[x + filter_limit] = filter_limit - x;
1586
    }
1587
#endif
1588

    
1589
    for (plane = 0; plane < 3; plane++) {
1590
        int width           = s->fragment_width  >> !!plane;
1591
        int height          = s->fragment_height >> !!plane;
1592
        int fragment        = s->fragment_start        [plane];
1593
        int stride          = s->current_frame.linesize[plane];
1594
        uint8_t *plane_data = s->current_frame.data    [plane];
1595
        if (!s->flipped_image) stride = -stride;
1596

    
1597
        for (y = 0; y < height; y++) {
1598

    
1599
            for (x = 0; x < width; x++) {
1600
                /* do not perform left edge filter for left columns frags */
1601
                if ((x > 0) &&
1602
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1603
                    s->dsp.vp3_h_loop_filter(
1604
                        plane_data + s->all_fragments[fragment].first_pixel,
1605
                        stride, bounding_values);
1606
                }
1607

    
1608
                /* do not perform top edge filter for top row fragments */
1609
                if ((y > 0) &&
1610
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1611
                    s->dsp.vp3_v_loop_filter(
1612
                        plane_data + s->all_fragments[fragment].first_pixel,
1613
                        stride, bounding_values);
1614
                }
1615

    
1616
                /* do not perform right edge filter for right column
1617
                 * fragments or if right fragment neighbor is also coded
1618
                 * in this frame (it will be filtered in next iteration) */
1619
                if ((x < width - 1) &&
1620
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1621
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1622
                    s->dsp.vp3_h_loop_filter(
1623
                        plane_data + s->all_fragments[fragment + 1].first_pixel,
1624
                        stride, bounding_values);
1625
                }
1626

    
1627
                /* do not perform bottom edge filter for bottom row
1628
                 * fragments or if bottom fragment neighbor is also coded
1629
                 * in this frame (it will be filtered in the next row) */
1630
                if ((y < height - 1) &&
1631
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1632
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1633
                    s->dsp.vp3_v_loop_filter(
1634
                        plane_data + s->all_fragments[fragment + width].first_pixel,
1635
                        stride, bounding_values);
1636
                }
1637

    
1638
                fragment++;
1639
            }
1640
        }
1641
    }
1642
}
1643

    
1644
/*
1645
 * This function computes the first pixel addresses for each fragment.
1646
 * This function needs to be invoked after the first frame is allocated
1647
 * so that it has access to the plane strides.
1648
 */
1649
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1650
{
1651
#define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
1652
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1653

    
1654
    int i, x, y;
1655
    const int y_inc = s->flipped_image ? 1 : -1;
1656

    
1657
    /* figure out the first pixel addresses for each of the fragments */
1658
    /* Y plane */
1659
    i = 0;
1660
    for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1661
        for (x = 0; x < s->fragment_width; x++) {
1662
            s->all_fragments[i++].first_pixel =
1663
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1664
                    s->golden_frame.linesize[0] +
1665
                    x * FRAGMENT_PIXELS;
1666
        }
1667
    }
1668

    
1669
    /* U plane */
1670
    i = s->fragment_start[1];
1671
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1672
        for (x = 0; x < s->fragment_width / 2; x++) {
1673
            s->all_fragments[i++].first_pixel =
1674
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1675
                    s->golden_frame.linesize[1] +
1676
                    x * FRAGMENT_PIXELS;
1677
        }
1678
    }
1679

    
1680
    /* V plane */
1681
    i = s->fragment_start[2];
1682
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1683
        for (x = 0; x < s->fragment_width / 2; x++) {
1684
            s->all_fragments[i++].first_pixel =
1685
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1686
                    s->golden_frame.linesize[2] +
1687
                    x * FRAGMENT_PIXELS;
1688
        }
1689
    }
1690
}
1691

    
1692
/*
1693
 * This is the ffmpeg/libavcodec API init function.
1694
 */
1695
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1696
{
1697
    Vp3DecodeContext *s = avctx->priv_data;
1698
    int i, inter, plane;
1699
    int c_width;
1700
    int c_height;
1701
    int y_superblock_count;
1702
    int c_superblock_count;
1703

    
1704
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1705
        s->version = 0;
1706
    else
1707
        s->version = 1;
1708

    
1709
    s->avctx = avctx;
1710
    s->width = FFALIGN(avctx->width, 16);
1711
    s->height = FFALIGN(avctx->height, 16);
1712
    avctx->pix_fmt = PIX_FMT_YUV420P;
1713
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1714
    if(avctx->idct_algo==FF_IDCT_AUTO)
1715
        avctx->idct_algo=FF_IDCT_VP3;
1716
    dsputil_init(&s->dsp, avctx);
1717

    
1718
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1719

    
1720
    /* initialize to an impossible value which will force a recalculation
1721
     * in the first frame decode */
1722
    for (i = 0; i < 3; i++)
1723
        s->qps[i] = -1;
1724

    
1725
    s->y_superblock_width = (s->width + 31) / 32;
1726
    s->y_superblock_height = (s->height + 31) / 32;
1727
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1728

    
1729
    /* work out the dimensions for the C planes */
1730
    c_width = s->width / 2;
1731
    c_height = s->height / 2;
1732
    s->c_superblock_width = (c_width + 31) / 32;
1733
    s->c_superblock_height = (c_height + 31) / 32;
1734
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1735

    
1736
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1737
    s->u_superblock_start = y_superblock_count;
1738
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1739
    s->superblock_coding = av_malloc(s->superblock_count);
1740

    
1741
    s->macroblock_width = (s->width + 15) / 16;
1742
    s->macroblock_height = (s->height + 15) / 16;
1743
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1744

    
1745
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1746
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1747

    
1748
    /* fragment count covers all 8x8 blocks for all 3 planes */
1749
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1750
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1751
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1752

    
1753
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1754
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1755
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1756
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1757
    s->pixel_addresses_initialized = 0;
1758

    
1759
    if (!s->theora_tables)
1760
    {
1761
        for (i = 0; i < 64; i++) {
1762
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1763
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1764
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1765
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1766
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1767
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1768
        }
1769

    
1770
        for(inter=0; inter<2; inter++){
1771
            for(plane=0; plane<3; plane++){
1772
                s->qr_count[inter][plane]= 1;
1773
                s->qr_size [inter][plane][0]= 63;
1774
                s->qr_base [inter][plane][0]=
1775
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1776
            }
1777
        }
1778

    
1779
        /* init VLC tables */
1780
        for (i = 0; i < 16; i++) {
1781

    
1782
            /* DC histograms */
1783
            init_vlc(&s->dc_vlc[i], 5, 32,
1784
                &dc_bias[i][0][1], 4, 2,
1785
                &dc_bias[i][0][0], 4, 2, 0);
1786

    
1787
            /* group 1 AC histograms */
1788
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1789
                &ac_bias_0[i][0][1], 4, 2,
1790
                &ac_bias_0[i][0][0], 4, 2, 0);
1791

    
1792
            /* group 2 AC histograms */
1793
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1794
                &ac_bias_1[i][0][1], 4, 2,
1795
                &ac_bias_1[i][0][0], 4, 2, 0);
1796

    
1797
            /* group 3 AC histograms */
1798
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1799
                &ac_bias_2[i][0][1], 4, 2,
1800
                &ac_bias_2[i][0][0], 4, 2, 0);
1801

    
1802
            /* group 4 AC histograms */
1803
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1804
                &ac_bias_3[i][0][1], 4, 2,
1805
                &ac_bias_3[i][0][0], 4, 2, 0);
1806
        }
1807
    } else {
1808
        for (i = 0; i < 16; i++) {
1809

    
1810
            /* DC histograms */
1811
            if (init_vlc(&s->dc_vlc[i], 5, 32,
1812
                &s->huffman_table[i][0][1], 4, 2,
1813
                &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1814
                goto vlc_fail;
1815

    
1816
            /* group 1 AC histograms */
1817
            if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1818
                &s->huffman_table[i+16][0][1], 4, 2,
1819
                &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1820
                goto vlc_fail;
1821

    
1822
            /* group 2 AC histograms */
1823
            if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1824
                &s->huffman_table[i+16*2][0][1], 4, 2,
1825
                &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1826
                goto vlc_fail;
1827

    
1828
            /* group 3 AC histograms */
1829
            if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1830
                &s->huffman_table[i+16*3][0][1], 4, 2,
1831
                &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1832
                goto vlc_fail;
1833

    
1834
            /* group 4 AC histograms */
1835
            if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1836
                &s->huffman_table[i+16*4][0][1], 4, 2,
1837
                &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1838
                goto vlc_fail;
1839
        }
1840
    }
1841

    
1842
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1843
        &superblock_run_length_vlc_table[0][1], 4, 2,
1844
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1845

    
1846
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1847
        &fragment_run_length_vlc_table[0][1], 4, 2,
1848
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1849

    
1850
    init_vlc(&s->mode_code_vlc, 3, 8,
1851
        &mode_code_vlc_table[0][1], 2, 1,
1852
        &mode_code_vlc_table[0][0], 2, 1, 0);
1853

    
1854
    init_vlc(&s->motion_vector_vlc, 6, 63,
1855
        &motion_vector_vlc_table[0][1], 2, 1,
1856
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1857

    
1858
    /* work out the block mapping tables */
1859
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1860
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1861
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1862
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1863
    init_block_mapping(s);
1864

    
1865
    for (i = 0; i < 3; i++) {
1866
        s->current_frame.data[i] = NULL;
1867
        s->last_frame.data[i] = NULL;
1868
        s->golden_frame.data[i] = NULL;
1869
    }
1870

    
1871
    return 0;
1872

    
1873
vlc_fail:
1874
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1875
    return -1;
1876
}
1877

    
1878
/*
1879
 * This is the ffmpeg/libavcodec API frame decode function.
1880
 */
1881
static int vp3_decode_frame(AVCodecContext *avctx,
1882
                            void *data, int *data_size,
1883
                            AVPacket *avpkt)
1884
{
1885
    const uint8_t *buf = avpkt->data;
1886
    int buf_size = avpkt->size;
1887
    Vp3DecodeContext *s = avctx->priv_data;
1888
    GetBitContext gb;
1889
    static int counter = 0;
1890
    int i;
1891

    
1892
    init_get_bits(&gb, buf, buf_size * 8);
1893

    
1894
    if (s->theora && get_bits1(&gb))
1895
    {
1896
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1897
        return -1;
1898
    }
1899

    
1900
    s->keyframe = !get_bits1(&gb);
1901
    if (!s->theora)
1902
        skip_bits(&gb, 1);
1903
    for (i = 0; i < 3; i++)
1904
        s->last_qps[i] = s->qps[i];
1905

    
1906
    s->nqps=0;
1907
    do{
1908
        s->qps[s->nqps++]= get_bits(&gb, 6);
1909
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1910
    for (i = s->nqps; i < 3; i++)
1911
        s->qps[i] = -1;
1912

    
1913
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1914
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1915
            s->keyframe?"key":"", counter, s->qps[0]);
1916
    counter++;
1917

    
1918
    if (s->qps[0] != s->last_qps[0])
1919
        init_loop_filter(s);
1920

    
1921
    for (i = 0; i < s->nqps; i++)
1922
        // reinit all dequantizers if the first one changed, because
1923
        // the DC of the first quantizer must be used for all matrices
1924
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1925
            init_dequantizer(s, i);
1926

    
1927
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1928
        return buf_size;
1929

    
1930
    if (s->keyframe) {
1931
        if (!s->theora)
1932
        {
1933
            skip_bits(&gb, 4); /* width code */
1934
            skip_bits(&gb, 4); /* height code */
1935
            if (s->version)
1936
            {
1937
                s->version = get_bits(&gb, 5);
1938
                if (counter == 1)
1939
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1940
            }
1941
        }
1942
        if (s->version || s->theora)
1943
        {
1944
                if (get_bits1(&gb))
1945
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1946
            skip_bits(&gb, 2); /* reserved? */
1947
        }
1948

    
1949
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1950
            if (s->golden_frame.data[0])
1951
                avctx->release_buffer(avctx, &s->golden_frame);
1952
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1953
        } else {
1954
            if (s->golden_frame.data[0])
1955
                avctx->release_buffer(avctx, &s->golden_frame);
1956
            if (s->last_frame.data[0])
1957
                avctx->release_buffer(avctx, &s->last_frame);
1958
        }
1959

    
1960
        s->golden_frame.reference = 3;
1961
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1962
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1963
            return -1;
1964
        }
1965

    
1966
        /* golden frame is also the current frame */
1967
        s->current_frame= s->golden_frame;
1968

    
1969
        /* time to figure out pixel addresses? */
1970
        if (!s->pixel_addresses_initialized)
1971
        {
1972
            vp3_calculate_pixel_addresses(s);
1973
            s->pixel_addresses_initialized = 1;
1974
        }
1975
    } else {
1976
        /* allocate a new current frame */
1977
        s->current_frame.reference = 3;
1978
        if (!s->pixel_addresses_initialized) {
1979
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1980
            return -1;
1981
        }
1982
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1983
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1984
            return -1;
1985
        }
1986
    }
1987

    
1988
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1989
    s->current_frame.qstride= 0;
1990

    
1991
    init_frame(s, &gb);
1992

    
1993
    if (unpack_superblocks(s, &gb)){
1994
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1995
        return -1;
1996
    }
1997
    if (unpack_modes(s, &gb)){
1998
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1999
        return -1;
2000
    }
2001
    if (unpack_vectors(s, &gb)){
2002
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2003
        return -1;
2004
    }
2005
    if (unpack_block_qpis(s, &gb)){
2006
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2007
        return -1;
2008
    }
2009
    if (unpack_dct_coeffs(s, &gb)){
2010
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2011
        return -1;
2012
    }
2013

    
2014
    for (i = 0; i < s->macroblock_height; i++)
2015
        render_slice(s, i);
2016

    
2017
    apply_loop_filter(s);
2018

    
2019
    *data_size=sizeof(AVFrame);
2020
    *(AVFrame*)data= s->current_frame;
2021

    
2022
    /* release the last frame, if it is allocated and if it is not the
2023
     * golden frame */
2024
    if ((s->last_frame.data[0]) &&
2025
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2026
        avctx->release_buffer(avctx, &s->last_frame);
2027

    
2028
    /* shuffle frames (last = current) */
2029
    s->last_frame= s->current_frame;
2030
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2031

    
2032
    return buf_size;
2033
}
2034

    
2035
/*
2036
 * This is the ffmpeg/libavcodec API module cleanup function.
2037
 */
2038
static av_cold int vp3_decode_end(AVCodecContext *avctx)
2039
{
2040
    Vp3DecodeContext *s = avctx->priv_data;
2041
    int i;
2042

    
2043
    av_free(s->superblock_coding);
2044
    av_free(s->all_fragments);
2045
    av_free(s->coeff_counts);
2046
    av_free(s->coeffs);
2047
    av_free(s->coded_fragment_list);
2048
    av_free(s->superblock_fragments);
2049
    av_free(s->superblock_macroblocks);
2050
    av_free(s->macroblock_fragments);
2051
    av_free(s->macroblock_coding);
2052

    
2053
    for (i = 0; i < 16; i++) {
2054
        free_vlc(&s->dc_vlc[i]);
2055
        free_vlc(&s->ac_vlc_1[i]);
2056
        free_vlc(&s->ac_vlc_2[i]);
2057
        free_vlc(&s->ac_vlc_3[i]);
2058
        free_vlc(&s->ac_vlc_4[i]);
2059
    }
2060

    
2061
    free_vlc(&s->superblock_run_length_vlc);
2062
    free_vlc(&s->fragment_run_length_vlc);
2063
    free_vlc(&s->mode_code_vlc);
2064
    free_vlc(&s->motion_vector_vlc);
2065

    
2066
    /* release all frames */
2067
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2068
        avctx->release_buffer(avctx, &s->golden_frame);
2069
    if (s->last_frame.data[0])
2070
        avctx->release_buffer(avctx, &s->last_frame);
2071
    /* no need to release the current_frame since it will always be pointing
2072
     * to the same frame as either the golden or last frame */
2073

    
2074
    return 0;
2075
}
2076

    
2077
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2078
{
2079
    Vp3DecodeContext *s = avctx->priv_data;
2080

    
2081
    if (get_bits1(gb)) {
2082
        int token;
2083
        if (s->entries >= 32) { /* overflow */
2084
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2085
            return -1;
2086
        }
2087
        token = get_bits(gb, 5);
2088
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2089
        s->huffman_table[s->hti][token][0] = s->hbits;
2090
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2091
        s->entries++;
2092
    }
2093
    else {
2094
        if (s->huff_code_size >= 32) {/* overflow */
2095
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2096
            return -1;
2097
        }
2098
        s->huff_code_size++;
2099
        s->hbits <<= 1;
2100
        if (read_huffman_tree(avctx, gb))
2101
            return -1;
2102
        s->hbits |= 1;
2103
        if (read_huffman_tree(avctx, gb))
2104
            return -1;
2105
        s->hbits >>= 1;
2106
        s->huff_code_size--;
2107
    }
2108
    return 0;
2109
}
2110

    
2111
#if CONFIG_THEORA_DECODER
2112
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2113
{
2114
    Vp3DecodeContext *s = avctx->priv_data;
2115
    int visible_width, visible_height;
2116

    
2117
    s->theora = get_bits_long(gb, 24);
2118
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2119

    
2120
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2121
    /* but previous versions have the image flipped relative to vp3 */
2122
    if (s->theora < 0x030200)
2123
    {
2124
        s->flipped_image = 1;
2125
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2126
    }
2127

    
2128
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2129
    visible_height = s->height = get_bits(gb, 16) << 4;
2130

    
2131
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2132
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2133
        s->width= s->height= 0;
2134
        return -1;
2135
    }
2136

    
2137
    if (s->theora >= 0x030400)
2138
    {
2139
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2140
        // fixme, the next field is 36bits long
2141
        skip_bits(gb, 32); /* total number of blocks in a frame */
2142
        skip_bits(gb, 4); /* total number of blocks in a frame */
2143
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2144
    }
2145

    
2146
    if (s->theora >= 0x030200) {
2147
        visible_width  = get_bits_long(gb, 24);
2148
        visible_height = get_bits_long(gb, 24);
2149

    
2150
        skip_bits(gb, 8); /* offset x */
2151
        skip_bits(gb, 8); /* offset y */
2152
    }
2153

    
2154
    skip_bits(gb, 32); /* fps numerator */
2155
    skip_bits(gb, 32); /* fps denumerator */
2156
    skip_bits(gb, 24); /* aspect numerator */
2157
    skip_bits(gb, 24); /* aspect denumerator */
2158

    
2159
    if (s->theora < 0x030200)
2160
        skip_bits(gb, 5); /* keyframe frequency force */
2161
    skip_bits(gb, 8); /* colorspace */
2162
    if (s->theora >= 0x030400)
2163
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2164
    skip_bits(gb, 24); /* bitrate */
2165

    
2166
    skip_bits(gb, 6); /* quality hint */
2167

    
2168
    if (s->theora >= 0x030200)
2169
    {
2170
        skip_bits(gb, 5); /* keyframe frequency force */
2171

    
2172
        if (s->theora < 0x030400)
2173
            skip_bits(gb, 5); /* spare bits */
2174
    }
2175

    
2176
//    align_get_bits(gb);
2177

    
2178
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2179
        && visible_height <= s->height && visible_height > s->height-16)
2180
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2181
    else
2182
        avcodec_set_dimensions(avctx, s->width, s->height);
2183

    
2184
    return 0;
2185
}
2186

    
2187
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2188
{
2189
    Vp3DecodeContext *s = avctx->priv_data;
2190
    int i, n, matrices, inter, plane;
2191

    
2192
    if (s->theora >= 0x030200) {
2193
        n = get_bits(gb, 3);
2194
        /* loop filter limit values table */
2195
        for (i = 0; i < 64; i++) {
2196
            s->filter_limit_values[i] = get_bits(gb, n);
2197
            if (s->filter_limit_values[i] > 127) {
2198
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2199
                s->filter_limit_values[i] = 127;
2200
            }
2201
        }
2202
    }
2203

    
2204
    if (s->theora >= 0x030200)
2205
        n = get_bits(gb, 4) + 1;
2206
    else
2207
        n = 16;
2208
    /* quality threshold table */
2209
    for (i = 0; i < 64; i++)
2210
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2211

    
2212
    if (s->theora >= 0x030200)
2213
        n = get_bits(gb, 4) + 1;
2214
    else
2215
        n = 16;
2216
    /* dc scale factor table */
2217
    for (i = 0; i < 64; i++)
2218
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2219

    
2220
    if (s->theora >= 0x030200)
2221
        matrices = get_bits(gb, 9) + 1;
2222
    else
2223
        matrices = 3;
2224

    
2225
    if(matrices > 384){
2226
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2227
        return -1;
2228
    }
2229

    
2230
    for(n=0; n<matrices; n++){
2231
        for (i = 0; i < 64; i++)
2232
            s->base_matrix[n][i]= get_bits(gb, 8);
2233
    }
2234

    
2235
    for (inter = 0; inter <= 1; inter++) {
2236
        for (plane = 0; plane <= 2; plane++) {
2237
            int newqr= 1;
2238
            if (inter || plane > 0)
2239
                newqr = get_bits1(gb);
2240
            if (!newqr) {
2241
                int qtj, plj;
2242
                if(inter && get_bits1(gb)){
2243
                    qtj = 0;
2244
                    plj = plane;
2245
                }else{
2246
                    qtj= (3*inter + plane - 1) / 3;
2247
                    plj= (plane + 2) % 3;
2248
                }
2249
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2250
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2251
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2252
            } else {
2253
                int qri= 0;
2254
                int qi = 0;
2255

    
2256
                for(;;){
2257
                    i= get_bits(gb, av_log2(matrices-1)+1);
2258
                    if(i>= matrices){
2259
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2260
                        return -1;
2261
                    }
2262
                    s->qr_base[inter][plane][qri]= i;
2263
                    if(qi >= 63)
2264
                        break;
2265
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2266
                    s->qr_size[inter][plane][qri++]= i;
2267
                    qi += i;
2268
                }
2269

    
2270
                if (qi > 63) {
2271
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2272
                    return -1;
2273
                }
2274
                s->qr_count[inter][plane]= qri;
2275
            }
2276
        }
2277
    }
2278

    
2279
    /* Huffman tables */
2280
    for (s->hti = 0; s->hti < 80; s->hti++) {
2281
        s->entries = 0;
2282
        s->huff_code_size = 1;
2283
        if (!get_bits1(gb)) {
2284
            s->hbits = 0;
2285
            if(read_huffman_tree(avctx, gb))
2286
                return -1;
2287
            s->hbits = 1;
2288
            if(read_huffman_tree(avctx, gb))
2289
                return -1;
2290
        }
2291
    }
2292

    
2293
    s->theora_tables = 1;
2294

    
2295
    return 0;
2296
}
2297

    
2298
static av_cold int theora_decode_init(AVCodecContext *avctx)
2299
{
2300
    Vp3DecodeContext *s = avctx->priv_data;
2301
    GetBitContext gb;
2302
    int ptype;
2303
    uint8_t *header_start[3];
2304
    int header_len[3];
2305
    int i;
2306

    
2307
    s->theora = 1;
2308

    
2309
    if (!avctx->extradata_size)
2310
    {
2311
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2312
        return -1;
2313
    }
2314

    
2315
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2316
                              42, header_start, header_len) < 0) {
2317
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2318
        return -1;
2319
    }
2320

    
2321
  for(i=0;i<3;i++) {
2322
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2323

    
2324
    ptype = get_bits(&gb, 8);
2325

    
2326
     if (!(ptype & 0x80))
2327
     {
2328
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2329
//        return -1;
2330
     }
2331

    
2332
    // FIXME: Check for this as well.
2333
    skip_bits_long(&gb, 6*8); /* "theora" */
2334

    
2335
    switch(ptype)
2336
    {
2337
        case 0x80:
2338
            theora_decode_header(avctx, &gb);
2339
                break;
2340
        case 0x81:
2341
// FIXME: is this needed? it breaks sometimes
2342
//            theora_decode_comments(avctx, gb);
2343
            break;
2344
        case 0x82:
2345
            if (theora_decode_tables(avctx, &gb))
2346
                return -1;
2347
            break;
2348
        default:
2349
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2350
            break;
2351
    }
2352
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2353
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2354
    if (s->theora < 0x030200)
2355
        break;
2356
  }
2357

    
2358
    return vp3_decode_init(avctx);
2359
}
2360

    
2361
AVCodec theora_decoder = {
2362
    "theora",
2363
    CODEC_TYPE_VIDEO,
2364
    CODEC_ID_THEORA,
2365
    sizeof(Vp3DecodeContext),
2366
    theora_decode_init,
2367
    NULL,
2368
    vp3_decode_end,
2369
    vp3_decode_frame,
2370
    CODEC_CAP_DR1,
2371
    NULL,
2372
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2373
};
2374
#endif
2375

    
2376
AVCodec vp3_decoder = {
2377
    "vp3",
2378
    CODEC_TYPE_VIDEO,
2379
    CODEC_ID_VP3,
2380
    sizeof(Vp3DecodeContext),
2381
    vp3_decode_init,
2382
    NULL,
2383
    vp3_decode_end,
2384
    vp3_decode_frame,
2385
    CODEC_CAP_DR1,
2386
    NULL,
2387
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2388
};