Statistics
| Branch: | Revision:

ffmpeg / libavcodec / dsputil.h @ faca5619

History | View | Annotate | Download (35.5 KB)

1
/*
2
 * DSP utils
3
 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4
 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/dsputil.h
25
 * DSP utils.
26
 * note, many functions in here may use MMX which trashes the FPU state, it is
27
 * absolutely necessary to call emms_c() between dsp & float/double code
28
 */
29

    
30
#ifndef AVCODEC_DSPUTIL_H
31
#define AVCODEC_DSPUTIL_H
32

    
33
#include "libavutil/intreadwrite.h"
34
#include "avcodec.h"
35

    
36

    
37
//#define DEBUG
38
/* dct code */
39
typedef short DCTELEM;
40
typedef int DWTELEM;
41
typedef short IDWTELEM;
42

    
43
void fdct_ifast (DCTELEM *data);
44
void fdct_ifast248 (DCTELEM *data);
45
void ff_jpeg_fdct_islow (DCTELEM *data);
46
void ff_fdct248_islow (DCTELEM *data);
47

    
48
void j_rev_dct (DCTELEM *data);
49
void j_rev_dct4 (DCTELEM *data);
50
void j_rev_dct2 (DCTELEM *data);
51
void j_rev_dct1 (DCTELEM *data);
52
void ff_wmv2_idct_c(DCTELEM *data);
53

    
54
void ff_fdct_mmx(DCTELEM *block);
55
void ff_fdct_mmx2(DCTELEM *block);
56
void ff_fdct_sse2(DCTELEM *block);
57

    
58
void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
59
void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
60
void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
61
void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
62
void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
63
void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
64
void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65
void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66
void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
67
void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
68

    
69
void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
70
                              const float *src2, int src3, int blocksize, int step);
71
void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
72
                             const float *win, float add_bias, int len);
73
void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
74
void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
75

    
76
/* encoding scans */
77
extern const uint8_t ff_alternate_horizontal_scan[64];
78
extern const uint8_t ff_alternate_vertical_scan[64];
79
extern const uint8_t ff_zigzag_direct[64];
80
extern const uint8_t ff_zigzag248_direct[64];
81

    
82
/* pixel operations */
83
#define MAX_NEG_CROP 1024
84

    
85
/* temporary */
86
extern uint32_t ff_squareTbl[512];
87
extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
88

    
89
/* VP3 DSP functions */
90
void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
91
void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
92
void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
93

    
94
void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
95
void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
96

    
97
/* VP6 DSP functions */
98
void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
99
                           const int16_t *h_weights, const int16_t *v_weights);
100

    
101
/* 1/2^n downscaling functions from imgconvert.c */
102
void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
103
void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
104
void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
105
void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
106

    
107
void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
108
              int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
109

    
110
/* minimum alignment rules ;)
111
If you notice errors in the align stuff, need more alignment for some ASM code
112
for some CPU or need to use a function with less aligned data then send a mail
113
to the ffmpeg-devel mailing list, ...
114

115
!warning These alignments might not match reality, (missing attribute((align))
116
stuff somewhere possible).
117
I (Michael) did not check them, these are just the alignments which I think
118
could be reached easily ...
119

120
!future video codecs might need functions with less strict alignment
121
*/
122

    
123
/*
124
void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
125
void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
126
void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
127
void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
128
void clear_blocks_c(DCTELEM *blocks);
129
*/
130

    
131
/* add and put pixel (decoding) */
132
// blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
133
//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
134
typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
135
typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
136
typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
137
typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
138
typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
139
typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
140

    
141
#define DEF_OLD_QPEL(name)\
142
void ff_put_        ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
143
void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
144
void ff_avg_        ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
145

    
146
DEF_OLD_QPEL(qpel16_mc11_old_c)
147
DEF_OLD_QPEL(qpel16_mc31_old_c)
148
DEF_OLD_QPEL(qpel16_mc12_old_c)
149
DEF_OLD_QPEL(qpel16_mc32_old_c)
150
DEF_OLD_QPEL(qpel16_mc13_old_c)
151
DEF_OLD_QPEL(qpel16_mc33_old_c)
152
DEF_OLD_QPEL(qpel8_mc11_old_c)
153
DEF_OLD_QPEL(qpel8_mc31_old_c)
154
DEF_OLD_QPEL(qpel8_mc12_old_c)
155
DEF_OLD_QPEL(qpel8_mc32_old_c)
156
DEF_OLD_QPEL(qpel8_mc13_old_c)
157
DEF_OLD_QPEL(qpel8_mc33_old_c)
158

    
159
#define CALL_2X_PIXELS(a, b, n)\
160
static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
161
    b(block  , pixels  , line_size, h);\
162
    b(block+n, pixels+n, line_size, h);\
163
}
164

    
165
/* motion estimation */
166
// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
167
// although currently h<4 is not used as functions with width <8 are neither used nor implemented
168
typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
169

    
170

    
171
// for snow slices
172
typedef struct slice_buffer_s slice_buffer;
173

    
174
/**
175
 * Scantable.
176
 */
177
typedef struct ScanTable{
178
    const uint8_t *scantable;
179
    uint8_t permutated[64];
180
    uint8_t raster_end[64];
181
#if ARCH_PPC
182
                /** Used by dct_quantize_altivec to find last-non-zero */
183
    DECLARE_ALIGNED(16, uint8_t, inverse[64]);
184
#endif
185
} ScanTable;
186

    
187
void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
188

    
189
void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
190
                         int block_w, int block_h,
191
                         int src_x, int src_y, int w, int h);
192

    
193
/**
194
 * DSPContext.
195
 */
196
typedef struct DSPContext {
197
    /* pixel ops : interface with DCT */
198
    void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
199
    void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
200
    void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
201
    void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
202
    void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
203
    void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
204
    void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
205
    int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
206
    /**
207
     * translational global motion compensation.
208
     */
209
    void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
210
    /**
211
     * global motion compensation.
212
     */
213
    void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
214
                    int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
215
    void (*clear_block)(DCTELEM *block/*align 16*/);
216
    void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
217
    int (*pix_sum)(uint8_t * pix, int line_size);
218
    int (*pix_norm1)(uint8_t * pix, int line_size);
219
// 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
220

    
221
    me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
222
    me_cmp_func sse[6];
223
    me_cmp_func hadamard8_diff[6];
224
    me_cmp_func dct_sad[6];
225
    me_cmp_func quant_psnr[6];
226
    me_cmp_func bit[6];
227
    me_cmp_func rd[6];
228
    me_cmp_func vsad[6];
229
    me_cmp_func vsse[6];
230
    me_cmp_func nsse[6];
231
    me_cmp_func w53[6];
232
    me_cmp_func w97[6];
233
    me_cmp_func dct_max[6];
234
    me_cmp_func dct264_sad[6];
235

    
236
    me_cmp_func me_pre_cmp[6];
237
    me_cmp_func me_cmp[6];
238
    me_cmp_func me_sub_cmp[6];
239
    me_cmp_func mb_cmp[6];
240
    me_cmp_func ildct_cmp[6]; //only width 16 used
241
    me_cmp_func frame_skip_cmp[6]; //only width 8 used
242

    
243
    int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
244
                             int size);
245

    
246
    /**
247
     * Halfpel motion compensation with rounding (a+b+1)>>1.
248
     * this is an array[4][4] of motion compensation functions for 4
249
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
250
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
251
     * @param block destination where the result is stored
252
     * @param pixels source
253
     * @param line_size number of bytes in a horizontal line of block
254
     * @param h height
255
     */
256
    op_pixels_func put_pixels_tab[4][4];
257

    
258
    /**
259
     * Halfpel motion compensation with rounding (a+b+1)>>1.
260
     * This is an array[4][4] of motion compensation functions for 4
261
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
262
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
263
     * @param block destination into which the result is averaged (a+b+1)>>1
264
     * @param pixels source
265
     * @param line_size number of bytes in a horizontal line of block
266
     * @param h height
267
     */
268
    op_pixels_func avg_pixels_tab[4][4];
269

    
270
    /**
271
     * Halfpel motion compensation with no rounding (a+b)>>1.
272
     * this is an array[2][4] of motion compensation functions for 2
273
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
274
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
275
     * @param block destination where the result is stored
276
     * @param pixels source
277
     * @param line_size number of bytes in a horizontal line of block
278
     * @param h height
279
     */
280
    op_pixels_func put_no_rnd_pixels_tab[4][4];
281

    
282
    /**
283
     * Halfpel motion compensation with no rounding (a+b)>>1.
284
     * this is an array[2][4] of motion compensation functions for 2
285
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
286
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
287
     * @param block destination into which the result is averaged (a+b)>>1
288
     * @param pixels source
289
     * @param line_size number of bytes in a horizontal line of block
290
     * @param h height
291
     */
292
    op_pixels_func avg_no_rnd_pixels_tab[4][4];
293

    
294
    void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
295

    
296
    /**
297
     * Thirdpel motion compensation with rounding (a+b+1)>>1.
298
     * this is an array[12] of motion compensation functions for the 9 thirdpe
299
     * positions<br>
300
     * *pixels_tab[ xthirdpel + 4*ythirdpel ]
301
     * @param block destination where the result is stored
302
     * @param pixels source
303
     * @param line_size number of bytes in a horizontal line of block
304
     * @param h height
305
     */
306
    tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
307
    tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
308

    
309
    qpel_mc_func put_qpel_pixels_tab[2][16];
310
    qpel_mc_func avg_qpel_pixels_tab[2][16];
311
    qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
312
    qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
313
    qpel_mc_func put_mspel_pixels_tab[8];
314

    
315
    /**
316
     * h264 Chroma MC
317
     */
318
    h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
319
    h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
320
    /* This is really one func used in VC-1 decoding */
321
    h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
322
    h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
323

    
324
    qpel_mc_func put_h264_qpel_pixels_tab[4][16];
325
    qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
326

    
327
    qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
328
    qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
329

    
330
    h264_weight_func weight_h264_pixels_tab[10];
331
    h264_biweight_func biweight_h264_pixels_tab[10];
332

    
333
    /* AVS specific */
334
    qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
335
    qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
336
    void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
337
    void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
338
    void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
339
    void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
340
    void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
341

    
342
    me_cmp_func pix_abs[2][4];
343

    
344
    /* huffyuv specific */
345
    void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
346
    void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
347
    void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
348
    /**
349
     * subtract huffyuv's variant of median prediction
350
     * note, this might read from src1[-1], src2[-1]
351
     */
352
    void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
353
    void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
354
    /* this might write to dst[w] */
355
    void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
356
    void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
357

    
358
    void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
359
    void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
360
    /* v/h_loop_filter_luma_intra: align 16 */
361
    void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
362
    void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
363
    void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
364
    void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
365
    void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
366
    void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
367
    // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
368
    void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
369
                                      int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
370

    
371
    void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
372
    void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
373

    
374
    void (*h261_loop_filter)(uint8_t *src, int stride);
375

    
376
    void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
377
    void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
378

    
379
    void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
380
    void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
381

    
382
    void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
383
                             const int16_t *h_weights,const int16_t *v_weights);
384

    
385
    /* assume len is a multiple of 4, and arrays are 16-byte aligned */
386
    void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
387
    void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
388
    /* no alignment needed */
389
    void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
390
    /* assume len is a multiple of 8, and arrays are 16-byte aligned */
391
    void (*vector_fmul)(float *dst, const float *src, int len);
392
    void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
393
    /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
394
    void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
395
    /* assume len is a multiple of 4, and arrays are 16-byte aligned */
396
    void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
397
    /* assume len is a multiple of 8, and arrays are 16-byte aligned */
398
    void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
399
    void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
400

    
401
    /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
402
     * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
403
    void (*float_to_int16)(int16_t *dst, const float *src, long len);
404
    void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
405

    
406
    /* (I)DCT */
407
    void (*fdct)(DCTELEM *block/* align 16*/);
408
    void (*fdct248)(DCTELEM *block/* align 16*/);
409

    
410
    /* IDCT really*/
411
    void (*idct)(DCTELEM *block/* align 16*/);
412

    
413
    /**
414
     * block -> idct -> clip to unsigned 8 bit -> dest.
415
     * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
416
     * @param line_size size in bytes of a horizontal line of dest
417
     */
418
    void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
419

    
420
    /**
421
     * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
422
     * @param line_size size in bytes of a horizontal line of dest
423
     */
424
    void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
425

    
426
    /**
427
     * idct input permutation.
428
     * several optimized IDCTs need a permutated input (relative to the normal order of the reference
429
     * IDCT)
430
     * this permutation must be performed before the idct_put/add, note, normally this can be merged
431
     * with the zigzag/alternate scan<br>
432
     * an example to avoid confusion:
433
     * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
434
     * - (x -> referece dct -> reference idct -> x)
435
     * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
436
     * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
437
     */
438
    uint8_t idct_permutation[64];
439
    int idct_permutation_type;
440
#define FF_NO_IDCT_PERM 1
441
#define FF_LIBMPEG2_IDCT_PERM 2
442
#define FF_SIMPLE_IDCT_PERM 3
443
#define FF_TRANSPOSE_IDCT_PERM 4
444
#define FF_PARTTRANS_IDCT_PERM 5
445
#define FF_SSE2_IDCT_PERM 6
446

    
447
    int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
448
    void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
449
#define BASIS_SHIFT 16
450
#define RECON_SHIFT 6
451

    
452
    void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
453
#define EDGE_WIDTH 16
454

    
455
    /* h264 functions */
456
    /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
457
       NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
458
        The reason for above, is that no 2 out of one list may use a different permutation.
459
    */
460
    void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
461
    void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
462
    void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
463
    void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
464
    void (*h264_dct)(DCTELEM block[4][4]);
465
    void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
466
    void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
467
    void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
468
    void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
469

    
470
    /* snow wavelet */
471
    void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
472
    void (*horizontal_compose97i)(IDWTELEM *b, int width);
473
    void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
474

    
475
    void (*prefetch)(void *mem, int stride, int h);
476

    
477
    void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
478

    
479
    /* mlp/truehd functions */
480
    void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
481
                               int firorder, int iirorder,
482
                               unsigned int filter_shift, int32_t mask, int blocksize,
483
                               int32_t *sample_buffer);
484

    
485
    /* vc1 functions */
486
    void (*vc1_inv_trans_8x8)(DCTELEM *b);
487
    void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
488
    void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
489
    void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
490
    void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
491
    void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
492
    void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
493
    void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
494
    void (*vc1_v_overlap)(uint8_t* src, int stride);
495
    void (*vc1_h_overlap)(uint8_t* src, int stride);
496
    void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
497
    void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
498
    void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
499
    void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
500
    void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
501
    void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
502
    /* put 8x8 block with bicubic interpolation and quarterpel precision
503
     * last argument is actually round value instead of height
504
     */
505
    op_pixels_func put_vc1_mspel_pixels_tab[16];
506
    op_pixels_func avg_vc1_mspel_pixels_tab[16];
507

    
508
    /* intrax8 functions */
509
    void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
510
    void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
511
           int * range, int * sum,  int edges);
512

    
513
    /* ape functions */
514
    /**
515
     * Add contents of the second vector to the first one.
516
     * @param len length of vectors, should be multiple of 16
517
     */
518
    void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
519
    /**
520
     * Add contents of the second vector to the first one.
521
     * @param len length of vectors, should be multiple of 16
522
     */
523
    void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
524
    /**
525
     * Calculate scalar product of two vectors.
526
     * @param len length of vectors, should be multiple of 16
527
     * @param shift number of bits to discard from product
528
     */
529
    int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
530

    
531
    /* rv30 functions */
532
    qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
533
    qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
534

    
535
    /* rv40 functions */
536
    qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
537
    qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
538
    h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
539
    h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
540
} DSPContext;
541

    
542
void dsputil_static_init(void);
543
void dsputil_init(DSPContext* p, AVCodecContext *avctx);
544

    
545
int ff_check_alignment(void);
546

    
547
/**
548
 * permute block according to permuatation.
549
 * @param last last non zero element in scantable order
550
 */
551
void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
552

    
553
void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
554

    
555
#define         BYTE_VEC32(c)   ((c)*0x01010101UL)
556

    
557
static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
558
{
559
    return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
560
}
561

    
562
static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
563
{
564
    return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
565
}
566

    
567
static inline int get_penalty_factor(int lambda, int lambda2, int type){
568
    switch(type&0xFF){
569
    default:
570
    case FF_CMP_SAD:
571
        return lambda>>FF_LAMBDA_SHIFT;
572
    case FF_CMP_DCT:
573
        return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
574
    case FF_CMP_W53:
575
        return (4*lambda)>>(FF_LAMBDA_SHIFT);
576
    case FF_CMP_W97:
577
        return (2*lambda)>>(FF_LAMBDA_SHIFT);
578
    case FF_CMP_SATD:
579
    case FF_CMP_DCT264:
580
        return (2*lambda)>>FF_LAMBDA_SHIFT;
581
    case FF_CMP_RD:
582
    case FF_CMP_PSNR:
583
    case FF_CMP_SSE:
584
    case FF_CMP_NSSE:
585
        return lambda2>>FF_LAMBDA_SHIFT;
586
    case FF_CMP_BIT:
587
        return 1;
588
    }
589
}
590

    
591
/**
592
 * Empty mmx state.
593
 * this must be called between any dsp function and float/double code.
594
 * for example sin(); dsp->idct_put(); emms_c(); cos()
595
 */
596
#define emms_c()
597

    
598
/* should be defined by architectures supporting
599
   one or more MultiMedia extension */
600
int mm_support(void);
601
extern int mm_flags;
602

    
603
void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
604
void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
605
void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
606
void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
607
void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
608
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
609
void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
610
void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
611
void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
612

    
613
#define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
614
#define DECLARE_ALIGNED_8(t, v)  DECLARE_ALIGNED(8, t, v)
615

    
616
#if HAVE_MMX
617

    
618
#undef emms_c
619

    
620
static inline void emms(void)
621
{
622
    __asm__ volatile ("emms;":::"memory");
623
}
624

    
625

    
626
#define emms_c() \
627
{\
628
    if (mm_flags & FF_MM_MMX)\
629
        emms();\
630
}
631

    
632
#elif ARCH_ARM
633

    
634
#if HAVE_NEON
635
#   define STRIDE_ALIGN 16
636
#endif
637

    
638
#elif ARCH_PPC
639

    
640
#define STRIDE_ALIGN 16
641

    
642
#elif HAVE_MMI
643

    
644
#define STRIDE_ALIGN 16
645

    
646
#else
647

    
648
#define mm_flags 0
649
#define mm_support() 0
650

    
651
#endif
652

    
653
#ifndef STRIDE_ALIGN
654
#   define STRIDE_ALIGN 8
655
#endif
656

    
657
/* PSNR */
658
void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
659
              int orig_linesize[3], int coded_linesize,
660
              AVCodecContext *avctx);
661

    
662
/* FFT computation */
663

    
664
/* NOTE: soon integer code will be added, so you must use the
665
   FFTSample type */
666
typedef float FFTSample;
667

    
668
struct MDCTContext;
669

    
670
typedef struct FFTComplex {
671
    FFTSample re, im;
672
} FFTComplex;
673

    
674
typedef struct FFTContext {
675
    int nbits;
676
    int inverse;
677
    uint16_t *revtab;
678
    FFTComplex *exptab;
679
    FFTComplex *exptab1; /* only used by SSE code */
680
    FFTComplex *tmp_buf;
681
    void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
682
    void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
683
    void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
684
    void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
685
} FFTContext;
686

    
687
extern FFTSample* const ff_cos_tabs[13];
688

    
689
/**
690
 * Sets up a complex FFT.
691
 * @param nbits           log2 of the length of the input array
692
 * @param inverse         if 0 perform the forward transform, if 1 perform the inverse
693
 */
694
int ff_fft_init(FFTContext *s, int nbits, int inverse);
695
void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
696
void ff_fft_permute_sse(FFTContext *s, FFTComplex *z);
697
void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
698
void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
699
void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
700
void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
701
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
702

    
703
/**
704
 * Do the permutation needed BEFORE calling ff_fft_calc().
705
 */
706
static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
707
{
708
    s->fft_permute(s, z);
709
}
710
/**
711
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
712
 * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
713
 */
714
static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
715
{
716
    s->fft_calc(s, z);
717
}
718
void ff_fft_end(FFTContext *s);
719

    
720
/* MDCT computation */
721

    
722
typedef struct MDCTContext {
723
    int n;  /* size of MDCT (i.e. number of input data * 2) */
724
    int nbits; /* n = 2^nbits */
725
    /* pre/post rotation tables */
726
    FFTSample *tcos;
727
    FFTSample *tsin;
728
    FFTContext fft;
729
} MDCTContext;
730

    
731
static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input)
732
{
733
    s->fft.imdct_calc(s, output, input);
734
}
735
static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
736
{
737
    s->fft.imdct_half(s, output, input);
738
}
739

    
740
/**
741
 * Generate a Kaiser-Bessel Derived Window.
742
 * @param   window  pointer to half window
743
 * @param   alpha   determines window shape
744
 * @param   n       size of half window
745
 */
746
void ff_kbd_window_init(float *window, float alpha, int n);
747

    
748
/**
749
 * Generate a sine window.
750
 * @param   window  pointer to half window
751
 * @param   n       size of half window
752
 */
753
void ff_sine_window_init(float *window, int n);
754
extern float ff_sine_128 [ 128];
755
extern float ff_sine_256 [ 256];
756
extern float ff_sine_512 [ 512];
757
extern float ff_sine_1024[1024];
758
extern float ff_sine_2048[2048];
759
extern float ff_sine_4096[4096];
760
extern float *ff_sine_windows[6];
761

    
762
int ff_mdct_init(MDCTContext *s, int nbits, int inverse, double scale);
763
void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
764
void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
765
void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
766
void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
767
void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
768
void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
769
void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
770
void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
771
void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input);
772
void ff_mdct_end(MDCTContext *s);
773

    
774
/* Real Discrete Fourier Transform */
775

    
776
enum RDFTransformType {
777
    RDFT,
778
    IRDFT,
779
    RIDFT,
780
    IRIDFT,
781
};
782

    
783
typedef struct {
784
    int nbits;
785
    int inverse;
786
    int sign_convention;
787

    
788
    /* pre/post rotation tables */
789
    FFTSample *tcos;
790
    FFTSample *tsin;
791
    FFTContext fft;
792
} RDFTContext;
793

    
794
/**
795
 * Sets up a real FFT.
796
 * @param nbits           log2 of the length of the input array
797
 * @param trans           the type of transform
798
 */
799
int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
800
void ff_rdft_calc(RDFTContext *s, FFTSample *data);
801
void ff_rdft_end(RDFTContext *s);
802

    
803
#define WRAPPER8_16(name8, name16)\
804
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
805
    return name8(s, dst           , src           , stride, h)\
806
          +name8(s, dst+8         , src+8         , stride, h);\
807
}
808

    
809
#define WRAPPER8_16_SQ(name8, name16)\
810
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
811
    int score=0;\
812
    score +=name8(s, dst           , src           , stride, 8);\
813
    score +=name8(s, dst+8         , src+8         , stride, 8);\
814
    if(h==16){\
815
        dst += 8*stride;\
816
        src += 8*stride;\
817
        score +=name8(s, dst           , src           , stride, 8);\
818
        score +=name8(s, dst+8         , src+8         , stride, 8);\
819
    }\
820
    return score;\
821
}
822

    
823

    
824
static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
825
{
826
    int i;
827
    for(i=0; i<h; i++)
828
    {
829
        AV_WN16(dst   , AV_RN16(src   ));
830
        dst+=dstStride;
831
        src+=srcStride;
832
    }
833
}
834

    
835
static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
836
{
837
    int i;
838
    for(i=0; i<h; i++)
839
    {
840
        AV_WN32(dst   , AV_RN32(src   ));
841
        dst+=dstStride;
842
        src+=srcStride;
843
    }
844
}
845

    
846
static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
847
{
848
    int i;
849
    for(i=0; i<h; i++)
850
    {
851
        AV_WN32(dst   , AV_RN32(src   ));
852
        AV_WN32(dst+4 , AV_RN32(src+4 ));
853
        dst+=dstStride;
854
        src+=srcStride;
855
    }
856
}
857

    
858
static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
859
{
860
    int i;
861
    for(i=0; i<h; i++)
862
    {
863
        AV_WN32(dst   , AV_RN32(src   ));
864
        AV_WN32(dst+4 , AV_RN32(src+4 ));
865
        dst[8]= src[8];
866
        dst+=dstStride;
867
        src+=srcStride;
868
    }
869
}
870

    
871
static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
872
{
873
    int i;
874
    for(i=0; i<h; i++)
875
    {
876
        AV_WN32(dst   , AV_RN32(src   ));
877
        AV_WN32(dst+4 , AV_RN32(src+4 ));
878
        AV_WN32(dst+8 , AV_RN32(src+8 ));
879
        AV_WN32(dst+12, AV_RN32(src+12));
880
        dst+=dstStride;
881
        src+=srcStride;
882
    }
883
}
884

    
885
static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
886
{
887
    int i;
888
    for(i=0; i<h; i++)
889
    {
890
        AV_WN32(dst   , AV_RN32(src   ));
891
        AV_WN32(dst+4 , AV_RN32(src+4 ));
892
        AV_WN32(dst+8 , AV_RN32(src+8 ));
893
        AV_WN32(dst+12, AV_RN32(src+12));
894
        dst[16]= src[16];
895
        dst+=dstStride;
896
        src+=srcStride;
897
    }
898
}
899

    
900
#endif /* AVCODEC_DSPUTIL_H */