ffmpeg / libavcodec / cook.c @ fbdcdaee
History  View  Annotate  Download (43.3 KB)
1 
/*


2 
* COOK compatible decoder

3 
* Copyright (c) 2003 Sascha Sommer

4 
* Copyright (c) 2005 Benjamin Larsson

5 
*

6 
* This file is part of FFmpeg.

7 
*

8 
* FFmpeg is free software; you can redistribute it and/or

9 
* modify it under the terms of the GNU Lesser General Public

10 
* License as published by the Free Software Foundation; either

11 
* version 2.1 of the License, or (at your option) any later version.

12 
*

13 
* FFmpeg is distributed in the hope that it will be useful,

14 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

16 
* Lesser General Public License for more details.

17 
*

18 
* You should have received a copy of the GNU Lesser General Public

19 
* License along with FFmpeg; if not, write to the Free Software

20 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

21 
*/

22  
23 
/**

24 
* @file

25 
* Cook compatible decoder. Bastardization of the G.722.1 standard.

26 
* This decoder handles RealNetworks, RealAudio G2 data.

27 
* Cook is identified by the codec name cook in RM files.

28 
*

29 
* To use this decoder, a calling application must supply the extradata

30 
* bytes provided from the RM container; 8+ bytes for mono streams and

31 
* 16+ for stereo streams (maybe more).

32 
*

33 
* Codec technicalities (all this assume a buffer length of 1024):

34 
* Cook works with several different techniques to achieve its compression.

35 
* In the timedomain the buffer is divided into 8 pieces and quantized. If

36 
* two neighboring pieces have different quantization index a smooth

37 
* quantization curve is used to get a smooth overlap between the different

38 
* pieces.

39 
* To get to the transformdomain Cook uses a modulated lapped transform.

40 
* The transform domain has 50 subbands with 20 elements each. This

41 
* means only a maximum of 50*20=1000 coefficients are used out of the 1024

42 
* available.

43 
*/

44  
45 
#include <math.h> 
46 
#include <stddef.h> 
47 
#include <stdio.h> 
48  
49 
#include "libavutil/lfg.h" 
50 
#include "libavutil/random_seed.h" 
51 
#include "avcodec.h" 
52 
#include "get_bits.h" 
53 
#include "dsputil.h" 
54 
#include "bytestream.h" 
55 
#include "fft.h" 
56 
#include "libavcore/audioconvert.h" 
57  
58 
#include "cookdata.h" 
59  
60 
/* the different Cook versions */

61 
#define MONO 0x1000001 
62 
#define STEREO 0x1000002 
63 
#define JOINT_STEREO 0x1000003 
64 
#define MC_COOK 0x2000000 //multichannel Cook, not supported 
65  
66 
#define SUBBAND_SIZE 20 
67 
#define MAX_SUBPACKETS 5 
68 
//#define COOKDEBUG

69  
70 
typedef struct { 
71 
int *now;

72 
int *previous;

73 
} cook_gains; 
74  
75 
typedef struct { 
76 
int ch_idx;

77 
int size;

78 
int num_channels;

79 
int cookversion;

80 
int samples_per_frame;

81 
int subbands;

82 
int js_subband_start;

83 
int js_vlc_bits;

84 
int samples_per_channel;

85 
int log2_numvector_size;

86 
unsigned int channel_mask; 
87 
VLC ccpl; ///< channel coupling

88 
int joint_stereo;

89 
int bits_per_subpacket;

90 
int bits_per_subpdiv;

91 
int total_subbands;

92 
int numvector_size; ///< 1 << log2_numvector_size; 
93  
94 
float mono_previous_buffer1[1024]; 
95 
float mono_previous_buffer2[1024]; 
96 
/** gain buffers */

97 
cook_gains gains1; 
98 
cook_gains gains2; 
99 
int gain_1[9]; 
100 
int gain_2[9]; 
101 
int gain_3[9]; 
102 
int gain_4[9]; 
103 
} COOKSubpacket; 
104  
105 
typedef struct cook { 
106 
/*

107 
* The following 5 functions provide the lowlevel arithmetic on

108 
* the internal audio buffers.

109 
*/

110 
void (* scalar_dequant)(struct cook *q, int index, int quant_index, 
111 
int* subband_coef_index, int* subband_coef_sign, 
112 
float* mlt_p);

113  
114 
void (* decouple) (struct cook *q, 
115 
COOKSubpacket *p, 
116 
int subband,

117 
float f1, float f2, 
118 
float *decode_buffer,

119 
float *mlt_buffer1, float *mlt_buffer2); 
120  
121 
void (* imlt_window) (struct cook *q, float *buffer1, 
122 
cook_gains *gains_ptr, float *previous_buffer);

123  
124 
void (* interpolate) (struct cook *q, float* buffer, 
125 
int gain_index, int gain_index_next); 
126  
127 
void (* saturate_output) (struct cook *q, int chan, int16_t *out); 
128  
129 
AVCodecContext* avctx; 
130 
GetBitContext gb; 
131 
/* stream data */

132 
int nb_channels;

133 
int bit_rate;

134 
int sample_rate;

135 
int num_vectors;

136 
int samples_per_channel;

137 
/* states */

138 
AVLFG random_state; 
139  
140 
/* transform data */

141 
FFTContext mdct_ctx; 
142 
float* mlt_window;

143  
144 
/* VLC data */

145 
VLC envelope_quant_index[13];

146 
VLC sqvh[7]; //scalar quantization 
147  
148 
/* generatable tables and related variables */

149 
int gain_size_factor;

150 
float gain_table[23]; 
151  
152 
/* data buffers */

153  
154 
uint8_t* decoded_bytes_buffer; 
155 
DECLARE_ALIGNED(16, float,mono_mdct_output)[2048]; 
156 
float decode_buffer_1[1024]; 
157 
float decode_buffer_2[1024]; 
158 
float decode_buffer_0[1060]; /* static allocation for joint decode */ 
159  
160 
const float *cplscales[5]; 
161 
int num_subpackets;

162 
COOKSubpacket subpacket[MAX_SUBPACKETS]; 
163 
} COOKContext; 
164  
165 
static float pow2tab[127]; 
166 
static float rootpow2tab[127]; 
167  
168 
/* debug functions */

169  
170 
#ifdef COOKDEBUG

171 
static void dump_float_table(float* table, int size, int delimiter) { 
172 
int i=0; 
173 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
174 
for (i=0 ; i<size ; i++) { 
175 
av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); 
176 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
177 
} 
178 
} 
179  
180 
static void dump_int_table(int* table, int size, int delimiter) { 
181 
int i=0; 
182 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
183 
for (i=0 ; i<size ; i++) { 
184 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
185 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
186 
} 
187 
} 
188  
189 
static void dump_short_table(short* table, int size, int delimiter) { 
190 
int i=0; 
191 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
192 
for (i=0 ; i<size ; i++) { 
193 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
194 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
195 
} 
196 
} 
197  
198 
#endif

199  
200 
/*************** init functions ***************/

201  
202 
/* table generator */

203 
static av_cold void init_pow2table(void){ 
204 
int i;

205 
for (i=63 ; i<64 ; i++){ 
206 
pow2tab[63+i]= pow(2, i); 
207 
rootpow2tab[63+i]=sqrt(pow(2, i)); 
208 
} 
209 
} 
210  
211 
/* table generator */

212 
static av_cold void init_gain_table(COOKContext *q) { 
213 
int i;

214 
q>gain_size_factor = q>samples_per_channel/8;

215 
for (i=0 ; i<23 ; i++) { 
216 
q>gain_table[i] = pow(pow2tab[i+52] ,

217 
(1.0/(double)q>gain_size_factor)); 
218 
} 
219 
} 
220  
221  
222 
static av_cold int init_cook_vlc_tables(COOKContext *q) { 
223 
int i, result;

224  
225 
result = 0;

226 
for (i=0 ; i<13 ; i++) { 
227 
result = init_vlc (&q>envelope_quant_index[i], 9, 24, 
228 
envelope_quant_index_huffbits[i], 1, 1, 
229 
envelope_quant_index_huffcodes[i], 2, 2, 0); 
230 
} 
231 
av_log(q>avctx,AV_LOG_DEBUG,"sqvh VLC init\n");

232 
for (i=0 ; i<7 ; i++) { 
233 
result = init_vlc (&q>sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], 
234 
cvh_huffbits[i], 1, 1, 
235 
cvh_huffcodes[i], 2, 2, 0); 
236 
} 
237  
238 
for(i=0;i<q>num_subpackets;i++){ 
239 
if (q>subpacket[i].joint_stereo==1){ 
240 
result = init_vlc (&q>subpacket[i].ccpl, 6, (1<<q>subpacket[i].js_vlc_bits)1, 
241 
ccpl_huffbits[q>subpacket[i].js_vlc_bits2], 1, 1, 
242 
ccpl_huffcodes[q>subpacket[i].js_vlc_bits2], 2, 2, 0); 
243 
av_log(q>avctx,AV_LOG_DEBUG,"subpacket %i Jointstereo VLC used.\n",i);

244 
} 
245 
} 
246  
247 
av_log(q>avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");

248 
return result;

249 
} 
250  
251 
static av_cold int init_cook_mlt(COOKContext *q) { 
252 
int j;

253 
int mlt_size = q>samples_per_channel;

254  
255 
if ((q>mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) 
256 
return 1; 
257  
258 
/* Initialize the MLT window: simple sine window. */

259 
ff_sine_window_init(q>mlt_window, mlt_size); 
260 
for(j=0 ; j<mlt_size ; j++) 
261 
q>mlt_window[j] *= sqrt(2.0 / q>samples_per_channel); 
262  
263 
/* Initialize the MDCT. */

264 
if (ff_mdct_init(&q>mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) { 
265 
av_free(q>mlt_window); 
266 
return 1; 
267 
} 
268 
av_log(q>avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",

269 
av_log2(mlt_size)+1);

270  
271 
return 0; 
272 
} 
273  
274 
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) 
275 
{ 
276 
if (1) 
277 
return ptr;

278 
} 
279  
280 
static av_cold void init_cplscales_table (COOKContext *q) { 
281 
int i;

282 
for (i=0;i<5;i++) 
283 
q>cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))1); 
284 
} 
285  
286 
/*************** init functions end ***********/

287  
288 
#define DECODE_BYTES_PAD1(bytes) (3  ((bytes)+3) % 4) 
289 
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 
290  
291 
/**

292 
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2.

293 
* Why? No idea, some checksum/error detection method maybe.

294 
*

295 
* Out buffer size: extra bytes are needed to cope with

296 
* padding/misalignment.

297 
* Subpackets passed to the decoder can contain two, consecutive

298 
* halfsubpackets, of identical but arbitrary size.

299 
* 1234 1234 1234 1234 extraA extraB

300 
* Case 1: AAAA BBBB 0 0

301 
* Case 2: AAAA ABBB BB 3 3

302 
* Case 3: AAAA AABB BBBB 2 2

303 
* Case 4: AAAA AAAB BBBB BB 1 5

304 
*

305 
* Nice way to waste CPU cycles.

306 
*

307 
* @param inbuffer pointer to byte array of indata

308 
* @param out pointer to byte array of outdata

309 
* @param bytes number of bytes

310 
*/

311  
312 
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ 
313 
int i, off;

314 
uint32_t c; 
315 
const uint32_t* buf;

316 
uint32_t* obuf = (uint32_t*) out; 
317 
/* FIXME: 64 bit platforms would be able to do 64 bits at a time.

318 
* I'm too lazy though, should be something like

319 
* for(i=0 ; i<bitamount/64 ; i++)

320 
* (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);

321 
* Buffer alignment needs to be checked. */

322  
323 
off = (intptr_t)inbuffer & 3;

324 
buf = (const uint32_t*) (inbuffer  off);

325 
c = av_be2ne32((0x37c511f2 >> (off*8))  (0x37c511f2 << (32(off*8)))); 
326 
bytes += 3 + off;

327 
for (i = 0; i < bytes/4; i++) 
328 
obuf[i] = c ^ buf[i]; 
329  
330 
return off;

331 
} 
332  
333 
/**

334 
* Cook uninit

335 
*/

336  
337 
static av_cold int cook_decode_close(AVCodecContext *avctx) 
338 
{ 
339 
int i;

340 
COOKContext *q = avctx>priv_data; 
341 
av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");

342  
343 
/* Free allocated memory buffers. */

344 
av_free(q>mlt_window); 
345 
av_free(q>decoded_bytes_buffer); 
346  
347 
/* Free the transform. */

348 
ff_mdct_end(&q>mdct_ctx); 
349  
350 
/* Free the VLC tables. */

351 
for (i=0 ; i<13 ; i++) { 
352 
free_vlc(&q>envelope_quant_index[i]); 
353 
} 
354 
for (i=0 ; i<7 ; i++) { 
355 
free_vlc(&q>sqvh[i]); 
356 
} 
357 
for (i=0 ; i<q>num_subpackets ; i++) { 
358 
free_vlc(&q>subpacket[i].ccpl); 
359 
} 
360  
361 
av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");

362  
363 
return 0; 
364 
} 
365  
366 
/**

367 
* Fill the gain array for the timedomain quantization.

368 
*

369 
* @param gb pointer to the GetBitContext

370 
* @param gaininfo[9] array of gain indexes

371 
*/

372  
373 
static void decode_gain_info(GetBitContext *gb, int *gaininfo) 
374 
{ 
375 
int i, n;

376  
377 
while (get_bits1(gb)) {}

378 
n = get_bits_count(gb)  1; //amount of elements*2 to update 
379  
380 
i = 0;

381 
while (n) {

382 
int index = get_bits(gb, 3); 
383 
int gain = get_bits1(gb) ? get_bits(gb, 4)  7 : 1; 
384  
385 
while (i <= index) gaininfo[i++] = gain;

386 
} 
387 
while (i <= 8) gaininfo[i++] = 0; 
388 
} 
389  
390 
/**

391 
* Create the quant index table needed for the envelope.

392 
*

393 
* @param q pointer to the COOKContext

394 
* @param quant_index_table pointer to the array

395 
*/

396  
397 
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) { 
398 
int i,j, vlc_index;

399  
400 
quant_index_table[0]= get_bits(&q>gb,6)  6; //This is used later in categorize 
401  
402 
for (i=1 ; i < p>total_subbands ; i++){ 
403 
vlc_index=i; 
404 
if (i >= p>js_subband_start * 2) { 
405 
vlc_index=p>js_subband_start; 
406 
} else {

407 
vlc_index/=2;

408 
if(vlc_index < 1) vlc_index = 1; 
409 
} 
410 
if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 
411  
412 
j = get_vlc2(&q>gb, q>envelope_quant_index[vlc_index1].table,

413 
q>envelope_quant_index[vlc_index1].bits,2); 
414 
quant_index_table[i] = quant_index_table[i1] + j  12; //differential encoding 
415 
} 
416 
} 
417  
418 
/**

419 
* Calculate the category and category_index vector.

420 
*

421 
* @param q pointer to the COOKContext

422 
* @param quant_index_table pointer to the array

423 
* @param category pointer to the category array

424 
* @param category_index pointer to the category_index array

425 
*/

426  
427 
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table, 
428 
int* category, int* category_index){ 
429 
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;

430 
int exp_index2[102]; 
431 
int exp_index1[102]; 
432  
433 
int tmp_categorize_array[128*2]; 
434 
int tmp_categorize_array1_idx=p>numvector_size;

435 
int tmp_categorize_array2_idx=p>numvector_size;

436  
437 
bits_left = p>bits_per_subpacket  get_bits_count(&q>gb); 
438  
439 
if(bits_left > q>samples_per_channel) {

440 
bits_left = q>samples_per_channel + 
441 
((bits_left  q>samples_per_channel)*5)/8; 
442 
//av_log(q>avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);

443 
} 
444  
445 
memset(&exp_index1,0,102*sizeof(int)); 
446 
memset(&exp_index2,0,102*sizeof(int)); 
447 
memset(&tmp_categorize_array,0,128*2*sizeof(int)); 
448  
449 
bias=32;

450  
451 
/* Estimate bias. */

452 
for (i=32 ; i>0 ; i=i/2){ 
453 
num_bits = 0;

454 
index = 0;

455 
for (j=p>total_subbands ; j>0 ; j){ 
456 
exp_idx = av_clip((i  quant_index_table[index] + bias) / 2, 0, 7); 
457 
index++; 
458 
num_bits+=expbits_tab[exp_idx]; 
459 
} 
460 
if(num_bits >= bits_left  32){ 
461 
bias+=i; 
462 
} 
463 
} 
464  
465 
/* Calculate total number of bits. */

466 
num_bits=0;

467 
for (i=0 ; i<p>total_subbands ; i++) { 
468 
exp_idx = av_clip((bias  quant_index_table[i]) / 2, 0, 7); 
469 
num_bits += expbits_tab[exp_idx]; 
470 
exp_index1[i] = exp_idx; 
471 
exp_index2[i] = exp_idx; 
472 
} 
473 
tmpbias1 = tmpbias2 = num_bits; 
474  
475 
for (j = 1 ; j < p>numvector_size ; j++) { 
476 
if (tmpbias1 + tmpbias2 > 2*bits_left) { /* > */ 
477 
int max = 999999; 
478 
index=1;

479 
for (i=0 ; i<p>total_subbands ; i++){ 
480 
if (exp_index1[i] < 7) { 
481 
v = (2*exp_index1[i])  quant_index_table[i] + bias;

482 
if ( v >= max) {

483 
max = v; 
484 
index = i; 
485 
} 
486 
} 
487 
} 
488 
if(index==1)break; 
489 
tmp_categorize_array[tmp_categorize_array1_idx++] = index; 
490 
tmpbias1 = expbits_tab[exp_index1[index]]  
491 
expbits_tab[exp_index1[index]+1];

492 
++exp_index1[index]; 
493 
} else { /* < */ 
494 
int min = 999999; 
495 
index=1;

496 
for (i=0 ; i<p>total_subbands ; i++){ 
497 
if(exp_index2[i] > 0){ 
498 
v = (2*exp_index2[i])quant_index_table[i]+bias;

499 
if ( v < min) {

500 
min = v; 
501 
index = i; 
502 
} 
503 
} 
504 
} 
505 
if(index == 1)break; 
506 
tmp_categorize_array[tmp_categorize_array2_idx] = index; 
507 
tmpbias2 = expbits_tab[exp_index2[index]]  
508 
expbits_tab[exp_index2[index]1];

509 
exp_index2[index]; 
510 
} 
511 
} 
512  
513 
for(i=0 ; i<p>total_subbands ; i++) 
514 
category[i] = exp_index2[i]; 
515  
516 
for(i=0 ; i<p>numvector_size1 ; i++) 
517 
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; 
518  
519 
} 
520  
521  
522 
/**

523 
* Expand the category vector.

524 
*

525 
* @param q pointer to the COOKContext

526 
* @param category pointer to the category array

527 
* @param category_index pointer to the category_index array

528 
*/

529  
530 
static inline void expand_category(COOKContext *q, int* category, 
531 
int* category_index){

532 
int i;

533 
for(i=0 ; i<q>num_vectors ; i++){ 
534 
++category[category_index[i]]; 
535 
} 
536 
} 
537  
538 
/**

539 
* The real requantization of the mltcoefs

540 
*

541 
* @param q pointer to the COOKContext

542 
* @param index index

543 
* @param quant_index quantisation index

544 
* @param subband_coef_index array of indexes to quant_centroid_tab

545 
* @param subband_coef_sign signs of coefficients

546 
* @param mlt_p pointer into the mlt buffer

547 
*/

548  
549 
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, 
550 
int* subband_coef_index, int* subband_coef_sign, 
551 
float* mlt_p){

552 
int i;

553 
float f1;

554  
555 
for(i=0 ; i<SUBBAND_SIZE ; i++) { 
556 
if (subband_coef_index[i]) {

557 
f1 = quant_centroid_tab[index][subband_coef_index[i]]; 
558 
if (subband_coef_sign[i]) f1 = f1;

559 
} else {

560 
/* noise coding if subband_coef_index[i] == 0 */

561 
f1 = dither_tab[index]; 
562 
if (av_lfg_get(&q>random_state) < 0x80000000) f1 = f1; 
563 
} 
564 
mlt_p[i] = f1 * rootpow2tab[quant_index+63];

565 
} 
566 
} 
567 
/**

568 
* Unpack the subband_coef_index and subband_coef_sign vectors.

569 
*

570 
* @param q pointer to the COOKContext

571 
* @param category pointer to the category array

572 
* @param subband_coef_index array of indexes to quant_centroid_tab

573 
* @param subband_coef_sign signs of coefficients

574 
*/

575  
576 
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index, 
577 
int* subband_coef_sign) {

578 
int i,j;

579 
int vlc, vd ,tmp, result;

580  
581 
vd = vd_tab[category]; 
582 
result = 0;

583 
for(i=0 ; i<vpr_tab[category] ; i++){ 
584 
vlc = get_vlc2(&q>gb, q>sqvh[category].table, q>sqvh[category].bits, 3);

585 
if (p>bits_per_subpacket < get_bits_count(&q>gb)){

586 
vlc = 0;

587 
result = 1;

588 
} 
589 
for(j=vd1 ; j>=0 ; j){ 
590 
tmp = (vlc * invradix_tab[category])/0x100000;

591 
subband_coef_index[vd*i+j] = vlc  tmp * (kmax_tab[category]+1);

592 
vlc = tmp; 
593 
} 
594 
for(j=0 ; j<vd ; j++){ 
595 
if (subband_coef_index[i*vd + j]) {

596 
if(get_bits_count(&q>gb) < p>bits_per_subpacket){

597 
subband_coef_sign[i*vd+j] = get_bits1(&q>gb); 
598 
} else {

599 
result=1;

600 
subband_coef_sign[i*vd+j]=0;

601 
} 
602 
} else {

603 
subband_coef_sign[i*vd+j]=0;

604 
} 
605 
} 
606 
} 
607 
return result;

608 
} 
609  
610  
611 
/**

612 
* Fill the mlt_buffer with mlt coefficients.

613 
*

614 
* @param q pointer to the COOKContext

615 
* @param category pointer to the category array

616 
* @param quant_index_table pointer to the array

617 
* @param mlt_buffer pointer to mlt coefficients

618 
*/

619  
620  
621 
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category, 
622 
int *quant_index_table, float* mlt_buffer){ 
623 
/* A zero in this table means that the subband coefficient is

624 
random noise coded. */

625 
int subband_coef_index[SUBBAND_SIZE];

626 
/* A zero in this table means that the subband coefficient is a

627 
positive multiplicator. */

628 
int subband_coef_sign[SUBBAND_SIZE];

629 
int band, j;

630 
int index=0; 
631  
632 
for(band=0 ; band<p>total_subbands ; band++){ 
633 
index = category[band]; 
634 
if(category[band] < 7){ 
635 
if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){

636 
index=7;

637 
for(j=0 ; j<p>total_subbands ; j++) category[band+j]=7; 
638 
} 
639 
} 
640 
if(index>=7) { 
641 
memset(subband_coef_index, 0, sizeof(subband_coef_index)); 
642 
memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); 
643 
} 
644 
q>scalar_dequant(q, index, quant_index_table[band], 
645 
subband_coef_index, subband_coef_sign, 
646 
&mlt_buffer[band * SUBBAND_SIZE]); 
647 
} 
648  
649 
if(p>total_subbands*SUBBAND_SIZE >= q>samples_per_channel){

650 
return;

651 
} /* FIXME: should this be removed, or moved into loop above? */

652 
} 
653  
654  
655 
/**

656 
* function for decoding mono data

657 
*

658 
* @param q pointer to the COOKContext

659 
* @param mlt_buffer pointer to mlt coefficients

660 
*/

661  
662 
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) { 
663  
664 
int category_index[128]; 
665 
int quant_index_table[102]; 
666 
int category[128]; 
667  
668 
memset(&category, 0, 128*sizeof(int)); 
669 
memset(&category_index, 0, 128*sizeof(int)); 
670  
671 
decode_envelope(q, p, quant_index_table); 
672 
q>num_vectors = get_bits(&q>gb,p>log2_numvector_size); 
673 
categorize(q, p, quant_index_table, category, category_index); 
674 
expand_category(q, category, category_index); 
675 
decode_vectors(q, p, category, quant_index_table, mlt_buffer); 
676 
} 
677  
678  
679 
/**

680 
* the actual requantization of the timedomain samples

681 
*

682 
* @param q pointer to the COOKContext

683 
* @param buffer pointer to the timedomain buffer

684 
* @param gain_index index for the block multiplier

685 
* @param gain_index_next index for the next block multiplier

686 
*/

687  
688 
static void interpolate_float(COOKContext *q, float* buffer, 
689 
int gain_index, int gain_index_next){ 
690 
int i;

691 
float fc1, fc2;

692 
fc1 = pow2tab[gain_index+63];

693  
694 
if(gain_index == gain_index_next){ //static gain 
695 
for(i=0 ; i<q>gain_size_factor ; i++){ 
696 
buffer[i]*=fc1; 
697 
} 
698 
return;

699 
} else { //smooth gain 
700 
fc2 = q>gain_table[11 + (gain_index_nextgain_index)];

701 
for(i=0 ; i<q>gain_size_factor ; i++){ 
702 
buffer[i]*=fc1; 
703 
fc1*=fc2; 
704 
} 
705 
return;

706 
} 
707 
} 
708  
709 
/**

710 
* Apply transform window, overlap buffers.

711 
*

712 
* @param q pointer to the COOKContext

713 
* @param inbuffer pointer to the mltcoefficients

714 
* @param gains_ptr current and previous gains

715 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

716 
*/

717  
718 
static void imlt_window_float (COOKContext *q, float *inbuffer, 
719 
cook_gains *gains_ptr, float *previous_buffer)

720 
{ 
721 
const float fc = pow2tab[gains_ptr>previous[0] + 63]; 
722 
int i;

723 
/* The weird thing here, is that the two halves of the time domain

724 
* buffer are swapped. Also, the newest data, that we save away for

725 
* next frame, has the wrong sign. Hence the subtraction below.

726 
* Almost sounds like a complex conjugate/reverse data/FFT effect.

727 
*/

728  
729 
/* Apply window and overlap */

730 
for(i = 0; i < q>samples_per_channel; i++){ 
731 
inbuffer[i] = inbuffer[i] * fc * q>mlt_window[i]  
732 
previous_buffer[i] * q>mlt_window[q>samples_per_channel  1  i];

733 
} 
734 
} 
735  
736 
/**

737 
* The modulated lapped transform, this takes transform coefficients

738 
* and transforms them into timedomain samples.

739 
* Apply transform window, overlap buffers, apply gain profile

740 
* and buffer management.

741 
*

742 
* @param q pointer to the COOKContext

743 
* @param inbuffer pointer to the mltcoefficients

744 
* @param gains_ptr current and previous gains

745 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

746 
*/

747  
748 
static void imlt_gain(COOKContext *q, float *inbuffer, 
749 
cook_gains *gains_ptr, float* previous_buffer)

750 
{ 
751 
float *buffer0 = q>mono_mdct_output;

752 
float *buffer1 = q>mono_mdct_output + q>samples_per_channel;

753 
int i;

754  
755 
/* Inverse modified discrete cosine transform */

756 
ff_imdct_calc(&q>mdct_ctx, q>mono_mdct_output, inbuffer); 
757  
758 
q>imlt_window (q, buffer1, gains_ptr, previous_buffer); 
759  
760 
/* Apply gain profile */

761 
for (i = 0; i < 8; i++) { 
762 
if (gains_ptr>now[i]  gains_ptr>now[i + 1]) 
763 
q>interpolate(q, &buffer1[q>gain_size_factor * i], 
764 
gains_ptr>now[i], gains_ptr>now[i + 1]);

765 
} 
766  
767 
/* Save away the current to be previous block. */

768 
memcpy(previous_buffer, buffer0, sizeof(float)*q>samples_per_channel); 
769 
} 
770  
771  
772 
/**

773 
* function for getting the jointstereo coupling information

774 
*

775 
* @param q pointer to the COOKContext

776 
* @param decouple_tab decoupling array

777 
*

778 
*/

779  
780 
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){ 
781 
int length, i;

782  
783 
if(get_bits1(&q>gb)) {

784 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
785  
786 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
787 
for (i=0 ; i<length ; i++) { 
788 
decouple_tab[cplband[p>js_subband_start] + i] = get_vlc2(&q>gb, p>ccpl.table, p>ccpl.bits, 2);

789 
} 
790 
return;

791 
} 
792  
793 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
794  
795 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
796 
for (i=0 ; i<length ; i++) { 
797 
decouple_tab[cplband[p>js_subband_start] + i] = get_bits(&q>gb, p>js_vlc_bits); 
798 
} 
799 
return;

800 
} 
801  
802 
/*

803 
* function decouples a pair of signals from a single signal via multiplication.

804 
*

805 
* @param q pointer to the COOKContext

806 
* @param subband index of the current subband

807 
* @param f1 multiplier for channel 1 extraction

808 
* @param f2 multiplier for channel 2 extraction

809 
* @param decode_buffer input buffer

810 
* @param mlt_buffer1 pointer to left channel mlt coefficients

811 
* @param mlt_buffer2 pointer to right channel mlt coefficients

812 
*/

813 
static void decouple_float (COOKContext *q, 
814 
COOKSubpacket *p, 
815 
int subband,

816 
float f1, float f2, 
817 
float *decode_buffer,

818 
float *mlt_buffer1, float *mlt_buffer2) 
819 
{ 
820 
int j, tmp_idx;

821 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
822 
tmp_idx = ((p>js_subband_start + subband)*SUBBAND_SIZE)+j; 
823 
mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; 
824 
mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; 
825 
} 
826 
} 
827  
828 
/**

829 
* function for decoding joint stereo data

830 
*

831 
* @param q pointer to the COOKContext

832 
* @param mlt_buffer1 pointer to left channel mlt coefficients

833 
* @param mlt_buffer2 pointer to right channel mlt coefficients

834 
*/

835  
836 
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1, 
837 
float* mlt_buffer2) {

838 
int i,j;

839 
int decouple_tab[SUBBAND_SIZE];

840 
float *decode_buffer = q>decode_buffer_0;

841 
int idx, cpl_tmp;

842 
float f1,f2;

843 
const float* cplscale; 
844  
845 
memset(decouple_tab, 0, sizeof(decouple_tab)); 
846 
memset(decode_buffer, 0, sizeof(decode_buffer)); 
847  
848 
/* Make sure the buffers are zeroed out. */

849 
memset(mlt_buffer1,0, 1024*sizeof(float)); 
850 
memset(mlt_buffer2,0, 1024*sizeof(float)); 
851 
decouple_info(q, p, decouple_tab); 
852 
mono_decode(q, p, decode_buffer); 
853  
854 
/* The two channels are stored interleaved in decode_buffer. */

855 
for (i=0 ; i<p>js_subband_start ; i++) { 
856 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
857 
mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; 
858 
mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; 
859 
} 
860 
} 
861  
862 
/* When we reach js_subband_start (the higher frequencies)

863 
the coefficients are stored in a coupling scheme. */

864 
idx = (1 << p>js_vlc_bits)  1; 
865 
for (i=p>js_subband_start ; i<p>subbands ; i++) {

866 
cpl_tmp = cplband[i]; 
867 
idx =decouple_tab[cpl_tmp]; 
868 
cplscale = q>cplscales[p>js_vlc_bits2]; //choose decoupler table 
869 
f1 = cplscale[decouple_tab[cpl_tmp]]; 
870 
f2 = cplscale[idx1];

871 
q>decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); 
872 
idx = (1 << p>js_vlc_bits)  1; 
873 
} 
874 
} 
875  
876 
/**

877 
* First part of subpacket decoding:

878 
* decode raw stream bytes and read gain info.

879 
*

880 
* @param q pointer to the COOKContext

881 
* @param inbuffer pointer to raw stream data

882 
* @param gains_ptr array of current/prev gain pointers

883 
*/

884  
885 
static inline void 
886 
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,

887 
cook_gains *gains_ptr) 
888 
{ 
889 
int offset;

890  
891 
offset = decode_bytes(inbuffer, q>decoded_bytes_buffer, 
892 
p>bits_per_subpacket/8);

893 
init_get_bits(&q>gb, q>decoded_bytes_buffer + offset, 
894 
p>bits_per_subpacket); 
895 
decode_gain_info(&q>gb, gains_ptr>now); 
896  
897 
/* Swap current and previous gains */

898 
FFSWAP(int *, gains_ptr>now, gains_ptr>previous);

899 
} 
900  
901 
/**

902 
* Saturate the output signal to signed 16bit integers.

903 
*

904 
* @param q pointer to the COOKContext

905 
* @param chan channel to saturate

906 
* @param out pointer to the output vector

907 
*/

908 
static void 
909 
saturate_output_float (COOKContext *q, int chan, int16_t *out)

910 
{ 
911 
int j;

912 
float *output = q>mono_mdct_output + q>samples_per_channel;

913 
/* Clip and convert floats to 16 bits.

914 
*/

915 
for (j = 0; j < q>samples_per_channel; j++) { 
916 
out[chan + q>nb_channels * j] = 
917 
av_clip_int16(lrintf(output[j])); 
918 
} 
919 
} 
920  
921 
/**

922 
* Final part of subpacket decoding:

923 
* Apply modulated lapped transform, gain compensation,

924 
* clip and convert to integer.

925 
*

926 
* @param q pointer to the COOKContext

927 
* @param decode_buffer pointer to the mlt coefficients

928 
* @param gains_ptr array of current/prev gain pointers

929 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

930 
* @param out pointer to the output buffer

931 
* @param chan 0: left or single channel, 1: right channel

932 
*/

933  
934 
static inline void 
935 
mlt_compensate_output(COOKContext *q, float *decode_buffer,

936 
cook_gains *gains_ptr, float *previous_buffer,

937 
int16_t *out, int chan)

938 
{ 
939 
imlt_gain(q, decode_buffer, gains_ptr, previous_buffer); 
940 
q>saturate_output (q, chan, out); 
941 
} 
942  
943  
944 
/**

945 
* Cook subpacket decoding. This function returns one decoded subpacket,

946 
* usually 1024 samples per channel.

947 
*

948 
* @param q pointer to the COOKContext

949 
* @param inbuffer pointer to the inbuffer

950 
* @param outbuffer pointer to the outbuffer

951 
*/

952 
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) { 
953 
int sub_packet_size = p>size;

954 
/* packet dump */

955 
// for (i=0 ; i<sub_packet_size ; i++) {

956 
// av_log(q>avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);

957 
// }

958 
// av_log(q>avctx, AV_LOG_ERROR, "\n");

959 
memset(q>decode_buffer_1,0,sizeof(q>decode_buffer_1)); 
960 
decode_bytes_and_gain(q, p, inbuffer, &p>gains1); 
961  
962 
if (p>joint_stereo) {

963 
joint_decode(q, p, q>decode_buffer_1, q>decode_buffer_2); 
964 
} else {

965 
mono_decode(q, p, q>decode_buffer_1); 
966  
967 
if (p>num_channels == 2) { 
968 
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p>gains2);

969 
mono_decode(q, p, q>decode_buffer_2); 
970 
} 
971 
} 
972  
973 
mlt_compensate_output(q, q>decode_buffer_1, &p>gains1, 
974 
p>mono_previous_buffer1, outbuffer, p>ch_idx); 
975  
976 
if (p>num_channels == 2) { 
977 
if (p>joint_stereo) {

978 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains1, 
979 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

980 
} else {

981 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains2, 
982 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

983 
} 
984 
} 
985  
986 
} 
987  
988  
989 
/**

990 
* Cook frame decoding

991 
*

992 
* @param avctx pointer to the AVCodecContext

993 
*/

994  
995 
static int cook_decode_frame(AVCodecContext *avctx, 
996 
void *data, int *data_size, 
997 
AVPacket *avpkt) { 
998 
const uint8_t *buf = avpkt>data;

999 
int buf_size = avpkt>size;

1000 
COOKContext *q = avctx>priv_data; 
1001 
int i;

1002 
int offset = 0; 
1003 
int chidx = 0; 
1004  
1005 
if (buf_size < avctx>block_align)

1006 
return buf_size;

1007  
1008 
/* estimate subpacket sizes */

1009 
q>subpacket[0].size = avctx>block_align;

1010  
1011 
for(i=1;i<q>num_subpackets;i++){ 
1012 
q>subpacket[i].size = 2 * buf[avctx>block_align  q>num_subpackets + i];

1013 
q>subpacket[0].size = q>subpacket[i].size + 1; 
1014 
if (q>subpacket[0].size < 0) { 
1015 
av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx>block_align!\n");

1016 
return 1; 
1017 
} 
1018 
} 
1019  
1020 
/* decode supbackets */

1021 
*data_size = 0;

1022 
for(i=0;i<q>num_subpackets;i++){ 
1023 
q>subpacket[i].bits_per_subpacket = (q>subpacket[i].size*8)>>q>subpacket[i].bits_per_subpdiv;

1024 
q>subpacket[i].ch_idx = chidx; 
1025 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q>subpacket[i].size,q>subpacket[i].joint_stereo,offset,avctx>block_align);

1026 
decode_subpacket(q, &q>subpacket[i], buf + offset, (int16_t*)data); 
1027 
offset += q>subpacket[i].size; 
1028 
chidx += q>subpacket[i].num_channels; 
1029 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q>subpacket[i].size * 8,get_bits_count(&q>gb)); 
1030 
} 
1031 
*data_size = sizeof(int16_t) * q>nb_channels * q>samples_per_channel;

1032  
1033 
/* Discard the first two frames: no valid audio. */

1034 
if (avctx>frame_number < 2) *data_size = 0; 
1035  
1036 
return avctx>block_align;

1037 
} 
1038  
1039 
#ifdef COOKDEBUG

1040 
static void dump_cook_context(COOKContext *q) 
1041 
{ 
1042 
//int i=0;

1043 
#define PRINT(a,b) av_log(q>avctx,AV_LOG_ERROR," %s = %d\n", a, b); 
1044 
av_log(q>avctx,AV_LOG_ERROR,"COOKextradata\n");

1045 
av_log(q>avctx,AV_LOG_ERROR,"cookversion=%x\n",q>subpacket[0].cookversion); 
1046 
if (q>subpacket[0].cookversion > STEREO) { 
1047 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1048 
PRINT("js_vlc_bits",q>subpacket[0].js_vlc_bits); 
1049 
} 
1050 
av_log(q>avctx,AV_LOG_ERROR,"COOKContext\n");

1051 
PRINT("nb_channels",q>nb_channels);

1052 
PRINT("bit_rate",q>bit_rate);

1053 
PRINT("sample_rate",q>sample_rate);

1054 
PRINT("samples_per_channel",q>subpacket[0].samples_per_channel); 
1055 
PRINT("samples_per_frame",q>subpacket[0].samples_per_frame); 
1056 
PRINT("subbands",q>subpacket[0].subbands); 
1057 
PRINT("random_state",q>random_state);

1058 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1059 
PRINT("log2_numvector_size",q>subpacket[0].log2_numvector_size); 
1060 
PRINT("numvector_size",q>subpacket[0].numvector_size); 
1061 
PRINT("total_subbands",q>subpacket[0].total_subbands); 
1062 
} 
1063 
#endif

1064  
1065 
static av_cold int cook_count_channels(unsigned int mask){ 
1066 
int i;

1067 
int channels = 0; 
1068 
for(i = 0;i<32;i++){ 
1069 
if(mask & (1<<i)) 
1070 
++channels; 
1071 
} 
1072 
return channels;

1073 
} 
1074  
1075 
/**

1076 
* Cook initialization

1077 
*

1078 
* @param avctx pointer to the AVCodecContext

1079 
*/

1080  
1081 
static av_cold int cook_decode_init(AVCodecContext *avctx) 
1082 
{ 
1083 
COOKContext *q = avctx>priv_data; 
1084 
const uint8_t *edata_ptr = avctx>extradata;

1085 
const uint8_t *edata_ptr_end = edata_ptr + avctx>extradata_size;

1086 
int extradata_size = avctx>extradata_size;

1087 
int s = 0; 
1088 
unsigned int channel_mask = 0; 
1089 
q>avctx = avctx; 
1090  
1091 
/* Take care of the codec specific extradata. */

1092 
if (extradata_size <= 0) { 
1093 
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");

1094 
return 1; 
1095 
} 
1096 
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx>extradata_size);

1097  
1098 
/* Take data from the AVCodecContext (RM container). */

1099 
q>sample_rate = avctx>sample_rate; 
1100 
q>nb_channels = avctx>channels; 
1101 
q>bit_rate = avctx>bit_rate; 
1102  
1103 
/* Initialize RNG. */

1104 
av_lfg_init(&q>random_state, 0);

1105  
1106 
while(edata_ptr < edata_ptr_end){

1107 
/* 8 for mono, 16 for stereo, ? for multichannel

1108 
Swap to right endianness so we don't need to care later on. */

1109 
if (extradata_size >= 8){ 
1110 
q>subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); 
1111 
q>subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr); 
1112 
q>subpacket[s].subbands = bytestream_get_be16(&edata_ptr); 
1113 
extradata_size = 8;

1114 
} 
1115 
if (avctx>extradata_size >= 8){ 
1116 
bytestream_get_be32(&edata_ptr); //Unknown unused

1117 
q>subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); 
1118 
q>subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); 
1119 
extradata_size = 8;

1120 
} 
1121  
1122 
/* Initialize extradata related variables. */

1123 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame / q>nb_channels; 
1124 
q>subpacket[s].bits_per_subpacket = avctx>block_align * 8;

1125  
1126 
/* Initialize default data states. */

1127 
q>subpacket[s].log2_numvector_size = 5;

1128 
q>subpacket[s].total_subbands = q>subpacket[s].subbands; 
1129 
q>subpacket[s].num_channels = 1;

1130  
1131 
/* Initialize versiondependent variables */

1132  
1133 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q>subpacket[s].cookversion);

1134 
q>subpacket[s].joint_stereo = 0;

1135 
switch (q>subpacket[s].cookversion) {

1136 
case MONO:

1137 
if (q>nb_channels != 1) { 
1138 
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");

1139 
return 1; 
1140 
} 
1141 
av_log(avctx,AV_LOG_DEBUG,"MONO\n");

1142 
break;

1143 
case STEREO:

1144 
if (q>nb_channels != 1) { 
1145 
q>subpacket[s].bits_per_subpdiv = 1;

1146 
q>subpacket[s].num_channels = 2;

1147 
} 
1148 
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");

1149 
break;

1150 
case JOINT_STEREO:

1151 
if (q>nb_channels != 2) { 
1152 
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");

1153 
return 1; 
1154 
} 
1155 
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");

1156 
if (avctx>extradata_size >= 16){ 
1157 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1158 
q>subpacket[s].joint_stereo = 1;

1159 
q>subpacket[s].num_channels = 2;

1160 
} 
1161 
if (q>subpacket[s].samples_per_channel > 256) { 
1162 
q>subpacket[s].log2_numvector_size = 6;

1163 
} 
1164 
if (q>subpacket[s].samples_per_channel > 512) { 
1165 
q>subpacket[s].log2_numvector_size = 7;

1166 
} 
1167 
break;

1168 
case MC_COOK:

1169 
av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");

1170 
if(extradata_size >= 4) 
1171 
channel_mask = q>subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); 
1172  
1173 
if(cook_count_channels(q>subpacket[s].channel_mask) > 1){ 
1174 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1175 
q>subpacket[s].joint_stereo = 1;

1176 
q>subpacket[s].num_channels = 2;

1177 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame >> 1;

1178  
1179 
if (q>subpacket[s].samples_per_channel > 256) { 
1180 
q>subpacket[s].log2_numvector_size = 6;

1181 
} 
1182 
if (q>subpacket[s].samples_per_channel > 512) { 
1183 
q>subpacket[s].log2_numvector_size = 7;

1184 
} 
1185 
}else

1186 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame; 
1187  
1188 
break;

1189 
default:

1190 
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");

1191 
return 1; 
1192 
break;

1193 
} 
1194  
1195 
if(s > 1 && q>subpacket[s].samples_per_channel != q>samples_per_channel) { 
1196 
av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");

1197 
return 1; 
1198 
} else

1199 
q>samples_per_channel = q>subpacket[0].samples_per_channel;

1200  
1201  
1202 
/* Initialize variable relations */

1203 
q>subpacket[s].numvector_size = (1 << q>subpacket[s].log2_numvector_size);

1204  
1205 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1206 
if (q>subpacket[s].total_subbands > 53) { 
1207 
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");

1208 
return 1; 
1209 
} 
1210  
1211 
if ((q>subpacket[s].js_vlc_bits > 6)  (q>subpacket[s].js_vlc_bits < 0)) { 
1212 
av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q>subpacket[s].js_vlc_bits);

1213 
return 1; 
1214 
} 
1215  
1216 
if (q>subpacket[s].subbands > 50) { 
1217 
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");

1218 
return 1; 
1219 
} 
1220 
q>subpacket[s].gains1.now = q>subpacket[s].gain_1; 
1221 
q>subpacket[s].gains1.previous = q>subpacket[s].gain_2; 
1222 
q>subpacket[s].gains2.now = q>subpacket[s].gain_3; 
1223 
q>subpacket[s].gains2.previous = q>subpacket[s].gain_4; 
1224  
1225 
q>num_subpackets++; 
1226 
s++; 
1227 
if (s > MAX_SUBPACKETS) {

1228 
av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");

1229 
return 1; 
1230 
} 
1231 
} 
1232 
/* Generate tables */

1233 
init_pow2table(); 
1234 
init_gain_table(q); 
1235 
init_cplscales_table(q); 
1236  
1237 
if (init_cook_vlc_tables(q) != 0) 
1238 
return 1; 
1239  
1240  
1241 
if(avctx>block_align >= UINT_MAX/2) 
1242 
return 1; 
1243  
1244 
/* Pad the databuffer with:

1245 
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),

1246 
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */

1247 
q>decoded_bytes_buffer = 
1248 
av_mallocz(avctx>block_align 
1249 
+ DECODE_BYTES_PAD1(avctx>block_align) 
1250 
+ FF_INPUT_BUFFER_PADDING_SIZE); 
1251 
if (q>decoded_bytes_buffer == NULL) 
1252 
return 1; 
1253  
1254 
/* Initialize transform. */

1255 
if ( init_cook_mlt(q) != 0 ) 
1256 
return 1; 
1257  
1258 
/* Initialize COOK signal arithmetic handling */

1259 
if (1) { 
1260 
q>scalar_dequant = scalar_dequant_float; 
1261 
q>decouple = decouple_float; 
1262 
q>imlt_window = imlt_window_float; 
1263 
q>interpolate = interpolate_float; 
1264 
q>saturate_output = saturate_output_float; 
1265 
} 
1266  
1267 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1268 
if ((q>samples_per_channel == 256)  (q>samples_per_channel == 512)  (q>samples_per_channel == 1024)) { 
1269 
} else {

1270 
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q>samples_per_channel);

1271 
return 1; 
1272 
} 
1273  
1274 
avctx>sample_fmt = AV_SAMPLE_FMT_S16; 
1275 
if (channel_mask)

1276 
avctx>channel_layout = channel_mask; 
1277 
else

1278 
avctx>channel_layout = (avctx>channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;

1279  
1280 
#ifdef COOKDEBUG

1281 
dump_cook_context(q); 
1282 
#endif

1283 
return 0; 
1284 
} 
1285  
1286  
1287 
AVCodec ff_cook_decoder = 
1288 
{ 
1289 
.name = "cook",

1290 
.type = AVMEDIA_TYPE_AUDIO, 
1291 
.id = CODEC_ID_COOK, 
1292 
.priv_data_size = sizeof(COOKContext),

1293 
.init = cook_decode_init, 
1294 
.close = cook_decode_close, 
1295 
.decode = cook_decode_frame, 
1296 
.long_name = NULL_IF_CONFIG_SMALL("COOK"),

1297 
}; 