ffmpeg / libavcodec / mpegaudiodec.c @ fd9451c6
History  View  Annotate  Download (77.2 KB)
1 
/*


2 
* MPEG Audio decoder

3 
* Copyright (c) 2001, 2002 Fabrice Bellard

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* MPEG Audio decoder.

25 
*/

26  
27 
#include "avcodec.h" 
28 
#include "get_bits.h" 
29 
#include "dsputil.h" 
30  
31 
/*

32 
* TODO:

33 
*  in low precision mode, use more 16 bit multiplies in synth filter

34 
*  test lsf / mpeg25 extensively.

35 
*/

36  
37 
#include "mpegaudio.h" 
38 
#include "mpegaudiodecheader.h" 
39  
40 
#include "mathops.h" 
41  
42 
#if CONFIG_FLOAT

43 
# define SHR(a,b) ((a)*(1.0/(1<<(b)))) 
44 
# define compute_antialias compute_antialias_float

45 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
46 
# define FIXR(x) (x)

47 
# define FIXHR(x) (x)

48 
# define MULH3(x, y, s) ((s)*(y)*(x))

49 
# define MULLx(x, y, s) ((y)*(x))

50 
# define RENAME(a) a ## _float 
51 
#else

52 
# define SHR(a,b) ((a)>>(b))

53 
# define compute_antialias compute_antialias_integer

54 
/* WARNING: only correct for posititive numbers */

55 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
56 
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) 
57 
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) 
58 
# define MULH3(x, y, s) MULH((s)*(x), y)

59 
# define MULLx(x, y, s) MULL(x,y,s)

60 
# define RENAME(a) a

61 
#endif

62  
63 
/****************/

64  
65 
#define HEADER_SIZE 4 
66  
67 
#include "mpegaudiodata.h" 
68 
#include "mpegaudiodectab.h" 
69  
70 
static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g); 
71 
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g); 
72  
73 
/* vlc structure for decoding layer 3 huffman tables */

74 
static VLC huff_vlc[16]; 
75 
static VLC_TYPE huff_vlc_tables[

76 
0+128+128+128+130+128+154+166+ 
77 
142+204+190+170+542+460+662+414 
78 
][2];

79 
static const int huff_vlc_tables_sizes[16] = { 
80 
0, 128, 128, 128, 130, 128, 154, 166, 
81 
142, 204, 190, 170, 542, 460, 662, 414 
82 
}; 
83 
static VLC huff_quad_vlc[2]; 
84 
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; 
85 
static const int huff_quad_vlc_tables_sizes[2] = { 
86 
128, 16 
87 
}; 
88 
/* computed from band_size_long */

89 
static uint16_t band_index_long[9][23]; 
90 
#include "mpegaudio_tablegen.h" 
91 
/* intensity stereo coef table */

92 
static INTFLOAT is_table[2][16]; 
93 
static INTFLOAT is_table_lsf[2][2][16]; 
94 
static int32_t csa_table[8][4]; 
95 
static float csa_table_float[8][4]; 
96 
static INTFLOAT mdct_win[8][36]; 
97  
98 
/* lower 2 bits: modulo 3, higher bits: shift */

99 
static uint16_t scale_factor_modshift[64]; 
100 
/* [i][j]: 2^(j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2)  1) */

101 
static int32_t scale_factor_mult[15][3]; 
102 
/* mult table for layer 2 group quantization */

103  
104 
#define SCALE_GEN(v) \

105 
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } 
106  
107 
static const int32_t scale_factor_mult2[3][3] = { 
108 
SCALE_GEN(4.0 / 3.0), /* 3 steps */ 
109 
SCALE_GEN(4.0 / 5.0), /* 5 steps */ 
110 
SCALE_GEN(4.0 / 9.0), /* 9 steps */ 
111 
}; 
112  
113 
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512]; 
114  
115 
/**

116 
* Convert region offsets to region sizes and truncate

117 
* size to big_values.

118 
*/

119 
static void ff_region_offset2size(GranuleDef *g){ 
120 
int i, k, j=0; 
121 
g>region_size[2] = (576 / 2); 
122 
for(i=0;i<3;i++) { 
123 
k = FFMIN(g>region_size[i], g>big_values); 
124 
g>region_size[i] = k  j; 
125 
j = k; 
126 
} 
127 
} 
128  
129 
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ 
130 
if (g>block_type == 2) 
131 
g>region_size[0] = (36 / 2); 
132 
else {

133 
if (s>sample_rate_index <= 2) 
134 
g>region_size[0] = (36 / 2); 
135 
else if (s>sample_rate_index != 8) 
136 
g>region_size[0] = (54 / 2); 
137 
else

138 
g>region_size[0] = (108 / 2); 
139 
} 
140 
g>region_size[1] = (576 / 2); 
141 
} 
142  
143 
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ 
144 
int l;

145 
g>region_size[0] =

146 
band_index_long[s>sample_rate_index][ra1 + 1] >> 1; 
147 
/* should not overflow */

148 
l = FFMIN(ra1 + ra2 + 2, 22); 
149 
g>region_size[1] =

150 
band_index_long[s>sample_rate_index][l] >> 1;

151 
} 
152  
153 
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ 
154 
if (g>block_type == 2) { 
155 
if (g>switch_point) {

156 
/* if switched mode, we handle the 36 first samples as

157 
long blocks. For 8000Hz, we handle the 48 first

158 
exponents as long blocks (XXX: check this!) */

159 
if (s>sample_rate_index <= 2) 
160 
g>long_end = 8;

161 
else if (s>sample_rate_index != 8) 
162 
g>long_end = 6;

163 
else

164 
g>long_end = 4; /* 8000 Hz */ 
165  
166 
g>short_start = 2 + (s>sample_rate_index != 8); 
167 
} else {

168 
g>long_end = 0;

169 
g>short_start = 0;

170 
} 
171 
} else {

172 
g>short_start = 13;

173 
g>long_end = 22;

174 
} 
175 
} 
176  
177 
/* layer 1 unscaling */

178 
/* n = number of bits of the mantissa minus 1 */

179 
static inline int l1_unscale(int n, int mant, int scale_factor) 
180 
{ 
181 
int shift, mod;

182 
int64_t val; 
183  
184 
shift = scale_factor_modshift[scale_factor]; 
185 
mod = shift & 3;

186 
shift >>= 2;

187 
val = MUL64(mant + (1 << n) + 1, scale_factor_mult[n1][mod]); 
188 
shift += n; 
189 
/* NOTE: at this point, 1 <= shift >= 21 + 15 */

190 
return (int)((val + (1LL << (shift  1))) >> shift); 
191 
} 
192  
193 
static inline int l2_unscale_group(int steps, int mant, int scale_factor) 
194 
{ 
195 
int shift, mod, val;

196  
197 
shift = scale_factor_modshift[scale_factor]; 
198 
mod = shift & 3;

199 
shift >>= 2;

200  
201 
val = (mant  (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; 
202 
/* NOTE: at this point, 0 <= shift <= 21 */

203 
if (shift > 0) 
204 
val = (val + (1 << (shift  1))) >> shift; 
205 
return val;

206 
} 
207  
208 
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */

209 
static inline int l3_unscale(int value, int exponent) 
210 
{ 
211 
unsigned int m; 
212 
int e;

213  
214 
e = table_4_3_exp [4*value + (exponent&3)]; 
215 
m = table_4_3_value[4*value + (exponent&3)]; 
216 
e = (exponent >> 2);

217 
assert(e>=1);

218 
if (e > 31) 
219 
return 0; 
220 
m = (m + (1 << (e1))) >> e; 
221  
222 
return m;

223 
} 
224  
225 
/* all integer n^(4/3) computation code */

226 
#define DEV_ORDER 13 
227  
228 
#define POW_FRAC_BITS 24 
229 
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) 
230 
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) 
231 
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)

232  
233 
static int dev_4_3_coefs[DEV_ORDER]; 
234  
235 
#if 0 /* unused */

236 
static int pow_mult3[3] = {

237 
POW_FIX(1.0),

238 
POW_FIX(1.25992104989487316476),

239 
POW_FIX(1.58740105196819947474),

240 
};

241 
#endif

242  
243 
static av_cold void int_pow_init(void) 
244 
{ 
245 
int i, a;

246  
247 
a = POW_FIX(1.0); 
248 
for(i=0;i<DEV_ORDER;i++) { 
249 
a = POW_MULL(a, POW_FIX(4.0 / 3.0)  i * POW_FIX(1.0)) / (i + 1); 
250 
dev_4_3_coefs[i] = a; 
251 
} 
252 
} 
253  
254 
#if 0 /* unused, remove? */

255 
/* return the mantissa and the binary exponent */

256 
static int int_pow(int i, int *exp_ptr)

257 
{

258 
int e, er, eq, j;

259 
int a, a1;

260 

261 
/* renormalize */

262 
a = i;

263 
e = POW_FRAC_BITS;

264 
while (a < (1 << (POW_FRAC_BITS  1))) {

265 
a = a << 1;

266 
e;

267 
}

268 
a = (1 << POW_FRAC_BITS);

269 
a1 = 0;

270 
for(j = DEV_ORDER  1; j >= 0; j)

271 
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);

272 
a = (1 << POW_FRAC_BITS) + a1;

273 
/* exponent compute (exact) */

274 
e = e * 4;

275 
er = e % 3;

276 
eq = e / 3;

277 
a = POW_MULL(a, pow_mult3[er]);

278 
while (a >= 2 * POW_FRAC_ONE) {

279 
a = a >> 1;

280 
eq++;

281 
}

282 
/* convert to float */

283 
while (a < POW_FRAC_ONE) {

284 
a = a << 1;

285 
eq;

286 
}

287 
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */

288 
#if POW_FRAC_BITS > FRAC_BITS

289 
a = (a + (1 << (POW_FRAC_BITS  FRAC_BITS  1))) >> (POW_FRAC_BITS  FRAC_BITS);

290 
/* correct overflow */

291 
if (a >= 2 * (1 << FRAC_BITS)) {

292 
a = a >> 1;

293 
eq++;

294 
}

295 
#endif

296 
*exp_ptr = eq; 
297 
return a;

298 
} 
299 
#endif

300  
301 
static av_cold int decode_init(AVCodecContext * avctx) 
302 
{ 
303 
MPADecodeContext *s = avctx>priv_data; 
304 
static int init=0; 
305 
int i, j, k;

306  
307 
s>avctx = avctx; 
308  
309 
avctx>sample_fmt= OUT_FMT; 
310 
s>error_recognition= avctx>error_recognition; 
311  
312 
if (!init && !avctx>parse_only) {

313 
int offset;

314  
315 
/* scale factors table for layer 1/2 */

316 
for(i=0;i<64;i++) { 
317 
int shift, mod;

318 
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */

319 
shift = (i / 3);

320 
mod = i % 3;

321 
scale_factor_modshift[i] = mod  (shift << 2);

322 
} 
323  
324 
/* scale factor multiply for layer 1 */

325 
for(i=0;i<15;i++) { 
326 
int n, norm;

327 
n = i + 2;

328 
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n)  1); 
329 
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); 
330 
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); 
331 
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); 
332 
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",

333 
i, norm, 
334 
scale_factor_mult[i][0],

335 
scale_factor_mult[i][1],

336 
scale_factor_mult[i][2]);

337 
} 
338  
339 
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); 
340  
341 
/* huffman decode tables */

342 
offset = 0;

343 
for(i=1;i<16;i++) { 
344 
const HuffTable *h = &mpa_huff_tables[i];

345 
int xsize, x, y;

346 
uint8_t tmp_bits [512];

347 
uint16_t tmp_codes[512];

348  
349 
memset(tmp_bits , 0, sizeof(tmp_bits )); 
350 
memset(tmp_codes, 0, sizeof(tmp_codes)); 
351  
352 
xsize = h>xsize; 
353  
354 
j = 0;

355 
for(x=0;x<xsize;x++) { 
356 
for(y=0;y<xsize;y++){ 
357 
tmp_bits [(x << 5)  y  ((x&&y)<<4)]= h>bits [j ]; 
358 
tmp_codes[(x << 5)  y  ((x&&y)<<4)]= h>codes[j++]; 
359 
} 
360 
} 
361  
362 
/* XXX: fail test */

363 
huff_vlc[i].table = huff_vlc_tables+offset; 
364 
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; 
365 
init_vlc(&huff_vlc[i], 7, 512, 
366 
tmp_bits, 1, 1, tmp_codes, 2, 2, 
367 
INIT_VLC_USE_NEW_STATIC); 
368 
offset += huff_vlc_tables_sizes[i]; 
369 
} 
370 
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); 
371  
372 
offset = 0;

373 
for(i=0;i<2;i++) { 
374 
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; 
375 
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; 
376 
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
377 
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 
378 
INIT_VLC_USE_NEW_STATIC); 
379 
offset += huff_quad_vlc_tables_sizes[i]; 
380 
} 
381 
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); 
382  
383 
for(i=0;i<9;i++) { 
384 
k = 0;

385 
for(j=0;j<22;j++) { 
386 
band_index_long[i][j] = k; 
387 
k += band_size_long[i][j]; 
388 
} 
389 
band_index_long[i][22] = k;

390 
} 
391  
392 
/* compute n ^ (4/3) and store it in mantissa/exp format */

393  
394 
int_pow_init(); 
395 
mpegaudio_tableinit(); 
396  
397 
for(i=0;i<7;i++) { 
398 
float f;

399 
INTFLOAT v; 
400 
if (i != 6) { 
401 
f = tan((double)i * M_PI / 12.0); 
402 
v = FIXR(f / (1.0 + f)); 
403 
} else {

404 
v = FIXR(1.0); 
405 
} 
406 
is_table[0][i] = v;

407 
is_table[1][6  i] = v; 
408 
} 
409 
/* invalid values */

410 
for(i=7;i<16;i++) 
411 
is_table[0][i] = is_table[1][i] = 0.0; 
412  
413 
for(i=0;i<16;i++) { 
414 
double f;

415 
int e, k;

416  
417 
for(j=0;j<2;j++) { 
418 
e = (j + 1) * ((i + 1) >> 1); 
419 
f = pow(2.0, e / 4.0); 
420 
k = i & 1;

421 
is_table_lsf[j][k ^ 1][i] = FIXR(f);

422 
is_table_lsf[j][k][i] = FIXR(1.0); 
423 
dprintf(avctx, "is_table_lsf %d %d: %x %x\n",

424 
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); 
425 
} 
426 
} 
427  
428 
for(i=0;i<8;i++) { 
429 
float ci, cs, ca;

430 
ci = ci_table[i]; 
431 
cs = 1.0 / sqrt(1.0 + ci * ci); 
432 
ca = cs * ci; 
433 
csa_table[i][0] = FIXHR(cs/4); 
434 
csa_table[i][1] = FIXHR(ca/4); 
435 
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); 
436 
csa_table[i][3] = FIXHR(ca/4)  FIXHR(cs/4); 
437 
csa_table_float[i][0] = cs;

438 
csa_table_float[i][1] = ca;

439 
csa_table_float[i][2] = ca + cs;

440 
csa_table_float[i][3] = ca  cs;

441 
} 
442  
443 
/* compute mdct windows */

444 
for(i=0;i<36;i++) { 
445 
for(j=0; j<4; j++){ 
446 
double d;

447  
448 
if(j==2 && i%3 != 1) 
449 
continue;

450  
451 
d= sin(M_PI * (i + 0.5) / 36.0); 
452 
if(j==1){ 
453 
if (i>=30) d= 0; 
454 
else if(i>=24) d= sin(M_PI * (i  18 + 0.5) / 12.0); 
455 
else if(i>=18) d= 1; 
456 
}else if(j==3){ 
457 
if (i< 6) d= 0; 
458 
else if(i< 12) d= sin(M_PI * (i  6 + 0.5) / 12.0); 
459 
else if(i< 18) d= 1; 
460 
} 
461 
//merge last stage of imdct into the window coefficients

462 
d*= 0.5 / cos(M_PI*(2*i + 19)/72); 
463  
464 
if(j==2) 
465 
mdct_win[j][i/3] = FIXHR((d / (1<<5))); 
466 
else

467 
mdct_win[j][i ] = FIXHR((d / (1<<5))); 
468 
} 
469 
} 
470  
471 
/* NOTE: we do frequency inversion adter the MDCT by changing

472 
the sign of the right window coefs */

473 
for(j=0;j<4;j++) { 
474 
for(i=0;i<36;i+=2) { 
475 
mdct_win[j + 4][i] = mdct_win[j][i];

476 
mdct_win[j + 4][i + 1] = mdct_win[j][i + 1]; 
477 
} 
478 
} 
479  
480 
init = 1;

481 
} 
482  
483 
if (avctx>codec_id == CODEC_ID_MP3ADU)

484 
s>adu_mode = 1;

485 
return 0; 
486 
} 
487  
488 
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6  j))) */

489  
490 
/* cos(i*pi/64) */

491  
492 
#define COS0_0 FIXHR(0.50060299823519630134/2) 
493 
#define COS0_1 FIXHR(0.50547095989754365998/2) 
494 
#define COS0_2 FIXHR(0.51544730992262454697/2) 
495 
#define COS0_3 FIXHR(0.53104259108978417447/2) 
496 
#define COS0_4 FIXHR(0.55310389603444452782/2) 
497 
#define COS0_5 FIXHR(0.58293496820613387367/2) 
498 
#define COS0_6 FIXHR(0.62250412303566481615/2) 
499 
#define COS0_7 FIXHR(0.67480834145500574602/2) 
500 
#define COS0_8 FIXHR(0.74453627100229844977/2) 
501 
#define COS0_9 FIXHR(0.83934964541552703873/2) 
502 
#define COS0_10 FIXHR(0.97256823786196069369/2) 
503 
#define COS0_11 FIXHR(1.16943993343288495515/4) 
504 
#define COS0_12 FIXHR(1.48416461631416627724/4) 
505 
#define COS0_13 FIXHR(2.05778100995341155085/8) 
506 
#define COS0_14 FIXHR(3.40760841846871878570/8) 
507 
#define COS0_15 FIXHR(10.19000812354805681150/32) 
508  
509 
#define COS1_0 FIXHR(0.50241928618815570551/2) 
510 
#define COS1_1 FIXHR(0.52249861493968888062/2) 
511 
#define COS1_2 FIXHR(0.56694403481635770368/2) 
512 
#define COS1_3 FIXHR(0.64682178335999012954/2) 
513 
#define COS1_4 FIXHR(0.78815462345125022473/2) 
514 
#define COS1_5 FIXHR(1.06067768599034747134/4) 
515 
#define COS1_6 FIXHR(1.72244709823833392782/4) 
516 
#define COS1_7 FIXHR(5.10114861868916385802/16) 
517  
518 
#define COS2_0 FIXHR(0.50979557910415916894/2) 
519 
#define COS2_1 FIXHR(0.60134488693504528054/2) 
520 
#define COS2_2 FIXHR(0.89997622313641570463/2) 
521 
#define COS2_3 FIXHR(2.56291544774150617881/8) 
522  
523 
#define COS3_0 FIXHR(0.54119610014619698439/2) 
524 
#define COS3_1 FIXHR(1.30656296487637652785/4) 
525  
526 
#define COS4_0 FIXHR(0.70710678118654752439/2) 
527  
528 
/* butterfly operator */

529 
#define BF(a, b, c, s)\

530 
{\ 
531 
tmp0 = tab[a] + tab[b];\ 
532 
tmp1 = tab[a]  tab[b];\ 
533 
tab[a] = tmp0;\ 
534 
tab[b] = MULH3(tmp1, c, 1<<(s));\

535 
} 
536  
537 
#define BF1(a, b, c, d)\

538 
{\ 
539 
BF(a, b, COS4_0, 1);\

540 
BF(c, d,COS4_0, 1);\

541 
tab[c] += tab[d];\ 
542 
} 
543  
544 
#define BF2(a, b, c, d)\

545 
{\ 
546 
BF(a, b, COS4_0, 1);\

547 
BF(c, d,COS4_0, 1);\

548 
tab[c] += tab[d];\ 
549 
tab[a] += tab[c];\ 
550 
tab[c] += tab[b];\ 
551 
tab[b] += tab[d];\ 
552 
} 
553  
554 
#define ADD(a, b) tab[a] += tab[b]

555  
556 
/* DCT32 without 1/sqrt(2) coef zero scaling. */

557 
static void dct32(INTFLOAT *out, INTFLOAT *tab) 
558 
{ 
559 
INTFLOAT tmp0, tmp1; 
560  
561 
/* pass 1 */

562 
BF( 0, 31, COS0_0 , 1); 
563 
BF(15, 16, COS0_15, 5); 
564 
/* pass 2 */

565 
BF( 0, 15, COS1_0 , 1); 
566 
BF(16, 31,COS1_0 , 1); 
567 
/* pass 1 */

568 
BF( 7, 24, COS0_7 , 1); 
569 
BF( 8, 23, COS0_8 , 1); 
570 
/* pass 2 */

571 
BF( 7, 8, COS1_7 , 4); 
572 
BF(23, 24,COS1_7 , 4); 
573 
/* pass 3 */

574 
BF( 0, 7, COS2_0 , 1); 
575 
BF( 8, 15,COS2_0 , 1); 
576 
BF(16, 23, COS2_0 , 1); 
577 
BF(24, 31,COS2_0 , 1); 
578 
/* pass 1 */

579 
BF( 3, 28, COS0_3 , 1); 
580 
BF(12, 19, COS0_12, 2); 
581 
/* pass 2 */

582 
BF( 3, 12, COS1_3 , 1); 
583 
BF(19, 28,COS1_3 , 1); 
584 
/* pass 1 */

585 
BF( 4, 27, COS0_4 , 1); 
586 
BF(11, 20, COS0_11, 2); 
587 
/* pass 2 */

588 
BF( 4, 11, COS1_4 , 1); 
589 
BF(20, 27,COS1_4 , 1); 
590 
/* pass 3 */

591 
BF( 3, 4, COS2_3 , 3); 
592 
BF(11, 12,COS2_3 , 3); 
593 
BF(19, 20, COS2_3 , 3); 
594 
BF(27, 28,COS2_3 , 3); 
595 
/* pass 4 */

596 
BF( 0, 3, COS3_0 , 1); 
597 
BF( 4, 7,COS3_0 , 1); 
598 
BF( 8, 11, COS3_0 , 1); 
599 
BF(12, 15,COS3_0 , 1); 
600 
BF(16, 19, COS3_0 , 1); 
601 
BF(20, 23,COS3_0 , 1); 
602 
BF(24, 27, COS3_0 , 1); 
603 
BF(28, 31,COS3_0 , 1); 
604  
605  
606  
607 
/* pass 1 */

608 
BF( 1, 30, COS0_1 , 1); 
609 
BF(14, 17, COS0_14, 3); 
610 
/* pass 2 */

611 
BF( 1, 14, COS1_1 , 1); 
612 
BF(17, 30,COS1_1 , 1); 
613 
/* pass 1 */

614 
BF( 6, 25, COS0_6 , 1); 
615 
BF( 9, 22, COS0_9 , 1); 
616 
/* pass 2 */

617 
BF( 6, 9, COS1_6 , 2); 
618 
BF(22, 25,COS1_6 , 2); 
619 
/* pass 3 */

620 
BF( 1, 6, COS2_1 , 1); 
621 
BF( 9, 14,COS2_1 , 1); 
622 
BF(17, 22, COS2_1 , 1); 
623 
BF(25, 30,COS2_1 , 1); 
624  
625 
/* pass 1 */

626 
BF( 2, 29, COS0_2 , 1); 
627 
BF(13, 18, COS0_13, 3); 
628 
/* pass 2 */

629 
BF( 2, 13, COS1_2 , 1); 
630 
BF(18, 29,COS1_2 , 1); 
631 
/* pass 1 */

632 
BF( 5, 26, COS0_5 , 1); 
633 
BF(10, 21, COS0_10, 1); 
634 
/* pass 2 */

635 
BF( 5, 10, COS1_5 , 2); 
636 
BF(21, 26,COS1_5 , 2); 
637 
/* pass 3 */

638 
BF( 2, 5, COS2_2 , 1); 
639 
BF(10, 13,COS2_2 , 1); 
640 
BF(18, 21, COS2_2 , 1); 
641 
BF(26, 29,COS2_2 , 1); 
642 
/* pass 4 */

643 
BF( 1, 2, COS3_1 , 2); 
644 
BF( 5, 6,COS3_1 , 2); 
645 
BF( 9, 10, COS3_1 , 2); 
646 
BF(13, 14,COS3_1 , 2); 
647 
BF(17, 18, COS3_1 , 2); 
648 
BF(21, 22,COS3_1 , 2); 
649 
BF(25, 26, COS3_1 , 2); 
650 
BF(29, 30,COS3_1 , 2); 
651  
652 
/* pass 5 */

653 
BF1( 0, 1, 2, 3); 
654 
BF2( 4, 5, 6, 7); 
655 
BF1( 8, 9, 10, 11); 
656 
BF2(12, 13, 14, 15); 
657 
BF1(16, 17, 18, 19); 
658 
BF2(20, 21, 22, 23); 
659 
BF1(24, 25, 26, 27); 
660 
BF2(28, 29, 30, 31); 
661  
662 
/* pass 6 */

663  
664 
ADD( 8, 12); 
665 
ADD(12, 10); 
666 
ADD(10, 14); 
667 
ADD(14, 9); 
668 
ADD( 9, 13); 
669 
ADD(13, 11); 
670 
ADD(11, 15); 
671  
672 
out[ 0] = tab[0]; 
673 
out[16] = tab[1]; 
674 
out[ 8] = tab[2]; 
675 
out[24] = tab[3]; 
676 
out[ 4] = tab[4]; 
677 
out[20] = tab[5]; 
678 
out[12] = tab[6]; 
679 
out[28] = tab[7]; 
680 
out[ 2] = tab[8]; 
681 
out[18] = tab[9]; 
682 
out[10] = tab[10]; 
683 
out[26] = tab[11]; 
684 
out[ 6] = tab[12]; 
685 
out[22] = tab[13]; 
686 
out[14] = tab[14]; 
687 
out[30] = tab[15]; 
688  
689 
ADD(24, 28); 
690 
ADD(28, 26); 
691 
ADD(26, 30); 
692 
ADD(30, 25); 
693 
ADD(25, 29); 
694 
ADD(29, 27); 
695 
ADD(27, 31); 
696  
697 
out[ 1] = tab[16] + tab[24]; 
698 
out[17] = tab[17] + tab[25]; 
699 
out[ 9] = tab[18] + tab[26]; 
700 
out[25] = tab[19] + tab[27]; 
701 
out[ 5] = tab[20] + tab[28]; 
702 
out[21] = tab[21] + tab[29]; 
703 
out[13] = tab[22] + tab[30]; 
704 
out[29] = tab[23] + tab[31]; 
705 
out[ 3] = tab[24] + tab[20]; 
706 
out[19] = tab[25] + tab[21]; 
707 
out[11] = tab[26] + tab[22]; 
708 
out[27] = tab[27] + tab[23]; 
709 
out[ 7] = tab[28] + tab[18]; 
710 
out[23] = tab[29] + tab[19]; 
711 
out[15] = tab[30] + tab[17]; 
712 
out[31] = tab[31]; 
713 
} 
714  
715 
#if CONFIG_FLOAT

716 
static inline float round_sample(float *sum) 
717 
{ 
718 
float sum1=*sum;

719 
*sum = 0;

720 
return sum1;

721 
} 
722  
723 
/* signed 16x16 > 32 multiply add accumulate */

724 
#define MACS(rt, ra, rb) rt+=(ra)*(rb)

725  
726 
/* signed 16x16 > 32 multiply */

727 
#define MULS(ra, rb) ((ra)*(rb))

728  
729 
#define MLSS(rt, ra, rb) rt=(ra)*(rb)

730  
731 
#elif FRAC_BITS <= 15 
732  
733 
static inline int round_sample(int *sum) 
734 
{ 
735 
int sum1;

736 
sum1 = (*sum) >> OUT_SHIFT; 
737 
*sum &= (1<<OUT_SHIFT)1; 
738 
return av_clip(sum1, OUT_MIN, OUT_MAX);

739 
} 
740  
741 
/* signed 16x16 > 32 multiply add accumulate */

742 
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)

743  
744 
/* signed 16x16 > 32 multiply */

745 
#define MULS(ra, rb) MUL16(ra, rb)

746  
747 
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)

748  
749 
#else

750  
751 
static inline int round_sample(int64_t *sum) 
752 
{ 
753 
int sum1;

754 
sum1 = (int)((*sum) >> OUT_SHIFT);

755 
*sum &= (1<<OUT_SHIFT)1; 
756 
return av_clip(sum1, OUT_MIN, OUT_MAX);

757 
} 
758  
759 
# define MULS(ra, rb) MUL64(ra, rb)

760 
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)

761 
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)

762 
#endif

763  
764 
#define SUM8(op, sum, w, p) \

765 
{ \ 
766 
op(sum, (w)[0 * 64], (p)[0 * 64]); \ 
767 
op(sum, (w)[1 * 64], (p)[1 * 64]); \ 
768 
op(sum, (w)[2 * 64], (p)[2 * 64]); \ 
769 
op(sum, (w)[3 * 64], (p)[3 * 64]); \ 
770 
op(sum, (w)[4 * 64], (p)[4 * 64]); \ 
771 
op(sum, (w)[5 * 64], (p)[5 * 64]); \ 
772 
op(sum, (w)[6 * 64], (p)[6 * 64]); \ 
773 
op(sum, (w)[7 * 64], (p)[7 * 64]); \ 
774 
} 
775  
776 
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \

777 
{ \ 
778 
INTFLOAT tmp;\ 
779 
tmp = p[0 * 64];\ 
780 
op1(sum1, (w1)[0 * 64], tmp);\ 
781 
op2(sum2, (w2)[0 * 64], tmp);\ 
782 
tmp = p[1 * 64];\ 
783 
op1(sum1, (w1)[1 * 64], tmp);\ 
784 
op2(sum2, (w2)[1 * 64], tmp);\ 
785 
tmp = p[2 * 64];\ 
786 
op1(sum1, (w1)[2 * 64], tmp);\ 
787 
op2(sum2, (w2)[2 * 64], tmp);\ 
788 
tmp = p[3 * 64];\ 
789 
op1(sum1, (w1)[3 * 64], tmp);\ 
790 
op2(sum2, (w2)[3 * 64], tmp);\ 
791 
tmp = p[4 * 64];\ 
792 
op1(sum1, (w1)[4 * 64], tmp);\ 
793 
op2(sum2, (w2)[4 * 64], tmp);\ 
794 
tmp = p[5 * 64];\ 
795 
op1(sum1, (w1)[5 * 64], tmp);\ 
796 
op2(sum2, (w2)[5 * 64], tmp);\ 
797 
tmp = p[6 * 64];\ 
798 
op1(sum1, (w1)[6 * 64], tmp);\ 
799 
op2(sum2, (w2)[6 * 64], tmp);\ 
800 
tmp = p[7 * 64];\ 
801 
op1(sum1, (w1)[7 * 64], tmp);\ 
802 
op2(sum2, (w2)[7 * 64], tmp);\ 
803 
} 
804  
805 
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)

806 
{ 
807 
int i;

808  
809 
/* max = 18760, max sum over all 16 coefs : 44736 */

810 
for(i=0;i<257;i++) { 
811 
INTFLOAT v; 
812 
v = ff_mpa_enwindow[i]; 
813 
#if CONFIG_FLOAT

814 
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); 
815 
#elif WFRAC_BITS < 16 
816 
v = (v + (1 << (16  WFRAC_BITS  1))) >> (16  WFRAC_BITS); 
817 
#endif

818 
window[i] = v; 
819 
if ((i & 63) != 0) 
820 
v = v; 
821 
if (i != 0) 
822 
window[512  i] = v;

823 
} 
824 
} 
825  
826 
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:

827 
32 samples. */

828 
/* XXX: optimize by avoiding ring buffer usage */

829 
void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset, 
830 
MPA_INT *window, int *dither_state,

831 
OUT_INT *samples, int incr,

832 
INTFLOAT sb_samples[SBLIMIT]) 
833 
{ 
834 
register MPA_INT *synth_buf;

835 
register const MPA_INT *w, *w2, *p; 
836 
int j, offset;

837 
OUT_INT *samples2; 
838 
#if CONFIG_FLOAT

839 
float sum, sum2;

840 
#elif FRAC_BITS <= 15 
841 
int32_t tmp[32];

842 
int sum, sum2;

843 
#else

844 
int64_t sum, sum2; 
845 
#endif

846  
847 
offset = *synth_buf_offset; 
848 
synth_buf = synth_buf_ptr + offset; 
849  
850 
#if FRAC_BITS <= 15 
851 
assert(!CONFIG_FLOAT); 
852 
dct32(tmp, sb_samples); 
853 
for(j=0;j<32;j++) { 
854 
/* NOTE: can cause a loss in precision if very high amplitude

855 
sound */

856 
synth_buf[j] = av_clip_int16(tmp[j]); 
857 
} 
858 
#else

859 
dct32(synth_buf, sb_samples); 
860 
#endif

861  
862 
/* copy to avoid wrap */

863 
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); 
864  
865 
samples2 = samples + 31 * incr;

866 
w = window; 
867 
w2 = window + 31;

868  
869 
sum = *dither_state; 
870 
p = synth_buf + 16;

871 
SUM8(MACS, sum, w, p); 
872 
p = synth_buf + 48;

873 
SUM8(MLSS, sum, w + 32, p);

874 
*samples = round_sample(&sum); 
875 
samples += incr; 
876 
w++; 
877  
878 
/* we calculate two samples at the same time to avoid one memory

879 
access per two sample */

880 
for(j=1;j<16;j++) { 
881 
sum2 = 0;

882 
p = synth_buf + 16 + j;

883 
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); 
884 
p = synth_buf + 48  j;

885 
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); 
886  
887 
*samples = round_sample(&sum); 
888 
samples += incr; 
889 
sum += sum2; 
890 
*samples2 = round_sample(&sum); 
891 
samples2 = incr; 
892 
w++; 
893 
w2; 
894 
} 
895  
896 
p = synth_buf + 32;

897 
SUM8(MLSS, sum, w + 32, p);

898 
*samples = round_sample(&sum); 
899 
*dither_state= sum; 
900  
901 
offset = (offset  32) & 511; 
902 
*synth_buf_offset = offset; 
903 
} 
904  
905 
#define C3 FIXHR(0.86602540378443864676/2) 
906  
907 
/* 0.5 / cos(pi*(2*i+1)/36) */

908 
static const INTFLOAT icos36[9] = { 
909 
FIXR(0.50190991877167369479), 
910 
FIXR(0.51763809020504152469), //0 
911 
FIXR(0.55168895948124587824), 
912 
FIXR(0.61038729438072803416), 
913 
FIXR(0.70710678118654752439), //1 
914 
FIXR(0.87172339781054900991), 
915 
FIXR(1.18310079157624925896), 
916 
FIXR(1.93185165257813657349), //2 
917 
FIXR(5.73685662283492756461), 
918 
}; 
919  
920 
/* 0.5 / cos(pi*(2*i+1)/36) */

921 
static const INTFLOAT icos36h[9] = { 
922 
FIXHR(0.50190991877167369479/2), 
923 
FIXHR(0.51763809020504152469/2), //0 
924 
FIXHR(0.55168895948124587824/2), 
925 
FIXHR(0.61038729438072803416/2), 
926 
FIXHR(0.70710678118654752439/2), //1 
927 
FIXHR(0.87172339781054900991/2), 
928 
FIXHR(1.18310079157624925896/4), 
929 
FIXHR(1.93185165257813657349/4), //2 
930 
// FIXHR(5.73685662283492756461),

931 
}; 
932  
933 
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious

934 
cases. */

935 
static void imdct12(INTFLOAT *out, INTFLOAT *in) 
936 
{ 
937 
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; 
938  
939 
in0= in[0*3]; 
940 
in1= in[1*3] + in[0*3]; 
941 
in2= in[2*3] + in[1*3]; 
942 
in3= in[3*3] + in[2*3]; 
943 
in4= in[4*3] + in[3*3]; 
944 
in5= in[5*3] + in[4*3]; 
945 
in5 += in3; 
946 
in3 += in1; 
947  
948 
in2= MULH3(in2, C3, 2);

949 
in3= MULH3(in3, C3, 4);

950  
951 
t1 = in0  in4; 
952 
t2 = MULH3(in1  in5, icos36h[4], 2); 
953  
954 
out[ 7]=

955 
out[10]= t1 + t2;

956 
out[ 1]=

957 
out[ 4]= t1  t2;

958  
959 
in0 += SHR(in4, 1);

960 
in4 = in0 + in2; 
961 
in5 += 2*in1;

962 
in1 = MULH3(in5 + in3, icos36h[1], 1); 
963 
out[ 8]=

964 
out[ 9]= in4 + in1;

965 
out[ 2]=

966 
out[ 3]= in4  in1;

967  
968 
in0 = in2; 
969 
in5 = MULH3(in5  in3, icos36h[7], 2); 
970 
out[ 0]=

971 
out[ 5]= in0  in5;

972 
out[ 6]=

973 
out[11]= in0 + in5;

974 
} 
975  
976 
/* cos(pi*i/18) */

977 
#define C1 FIXHR(0.98480775301220805936/2) 
978 
#define C2 FIXHR(0.93969262078590838405/2) 
979 
#define C3 FIXHR(0.86602540378443864676/2) 
980 
#define C4 FIXHR(0.76604444311897803520/2) 
981 
#define C5 FIXHR(0.64278760968653932632/2) 
982 
#define C6 FIXHR(0.5/2) 
983 
#define C7 FIXHR(0.34202014332566873304/2) 
984 
#define C8 FIXHR(0.17364817766693034885/2) 
985  
986  
987 
/* using Lee like decomposition followed by hand coded 9 points DCT */

988 
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) 
989 
{ 
990 
int i, j;

991 
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; 
992 
INTFLOAT tmp[18], *tmp1, *in1;

993  
994 
for(i=17;i>=1;i) 
995 
in[i] += in[i1];

996 
for(i=17;i>=3;i=2) 
997 
in[i] += in[i2];

998  
999 
for(j=0;j<2;j++) { 
1000 
tmp1 = tmp + j; 
1001 
in1 = in + j; 
1002  
1003 
t2 = in1[2*4] + in1[2*8]  in1[2*2]; 
1004  
1005 
t3 = in1[2*0] + SHR(in1[2*6],1); 
1006 
t1 = in1[2*0]  in1[2*6]; 
1007 
tmp1[ 6] = t1  SHR(t2,1); 
1008 
tmp1[16] = t1 + t2;

1009  
1010 
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); 
1011 
t1 = MULH3(in1[2*4]  in1[2*8] , 2*C8, 1); 
1012 
t2 = MULH3(in1[2*2] + in1[2*8] , C4, 2); 
1013  
1014 
tmp1[10] = t3  t0  t2;

1015 
tmp1[ 2] = t3 + t0 + t1;

1016 
tmp1[14] = t3 + t2  t1;

1017  
1018 
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7]  in1[2*1], C3, 2); 
1019 
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); 
1020 
t3 = MULH3(in1[2*5]  in1[2*7], 2*C7, 1); 
1021 
t0 = MULH3(in1[2*3], C3, 2); 
1022  
1023 
t1 = MULH3(in1[2*1] + in1[2*7], C5, 2); 
1024  
1025 
tmp1[ 0] = t2 + t3 + t0;

1026 
tmp1[12] = t2 + t1  t0;

1027 
tmp1[ 8] = t3  t1  t0;

1028 
} 
1029  
1030 
i = 0;

1031 
for(j=0;j<4;j++) { 
1032 
t0 = tmp[i]; 
1033 
t1 = tmp[i + 2];

1034 
s0 = t1 + t0; 
1035 
s2 = t1  t0; 
1036  
1037 
t2 = tmp[i + 1];

1038 
t3 = tmp[i + 3];

1039 
s1 = MULH3(t3 + t2, icos36h[j], 2);

1040 
s3 = MULLx(t3  t2, icos36[8  j], FRAC_BITS);

1041  
1042 
t0 = s0 + s1; 
1043 
t1 = s0  s1; 
1044 
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; 
1045 
out[(8  j)*SBLIMIT] = MULH3(t1, win[8  j], 1) + buf[8  j]; 
1046 
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); 
1047 
buf[8  j] = MULH3(t0, win[18 + 8  j], 1); 
1048  
1049 
t0 = s2 + s3; 
1050 
t1 = s2  s3; 
1051 
out[(9 + 8  j)*SBLIMIT] = MULH3(t1, win[9 + 8  j], 1) + buf[9 + 8  j]; 
1052 
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];

1053 
buf[9 + 8  j] = MULH3(t0, win[18 + 9 + 8  j], 1); 
1054 
buf[ + j] = MULH3(t0, win[18 + j], 1); 
1055 
i += 4;

1056 
} 
1057  
1058 
s0 = tmp[16];

1059 
s1 = MULH3(tmp[17], icos36h[4], 2); 
1060 
t0 = s0 + s1; 
1061 
t1 = s0  s1; 
1062 
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; 
1063 
out[(8  4)*SBLIMIT] = MULH3(t1, win[8  4], 1) + buf[8  4]; 
1064 
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); 
1065 
buf[8  4] = MULH3(t0, win[18 + 8  4], 1); 
1066 
} 
1067  
1068 
/* return the number of decoded frames */

1069 
static int mp_decode_layer1(MPADecodeContext *s) 
1070 
{ 
1071 
int bound, i, v, n, ch, j, mant;

1072 
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; 
1073 
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; 
1074  
1075 
if (s>mode == MPA_JSTEREO)

1076 
bound = (s>mode_ext + 1) * 4; 
1077 
else

1078 
bound = SBLIMIT; 
1079  
1080 
/* allocation bits */

1081 
for(i=0;i<bound;i++) { 
1082 
for(ch=0;ch<s>nb_channels;ch++) { 
1083 
allocation[ch][i] = get_bits(&s>gb, 4);

1084 
} 
1085 
} 
1086 
for(i=bound;i<SBLIMIT;i++) {

1087 
allocation[0][i] = get_bits(&s>gb, 4); 
1088 
} 
1089  
1090 
/* scale factors */

1091 
for(i=0;i<bound;i++) { 
1092 
for(ch=0;ch<s>nb_channels;ch++) { 
1093 
if (allocation[ch][i])

1094 
scale_factors[ch][i] = get_bits(&s>gb, 6);

1095 
} 
1096 
} 
1097 
for(i=bound;i<SBLIMIT;i++) {

1098 
if (allocation[0][i]) { 
1099 
scale_factors[0][i] = get_bits(&s>gb, 6); 
1100 
scale_factors[1][i] = get_bits(&s>gb, 6); 
1101 
} 
1102 
} 
1103  
1104 
/* compute samples */

1105 
for(j=0;j<12;j++) { 
1106 
for(i=0;i<bound;i++) { 
1107 
for(ch=0;ch<s>nb_channels;ch++) { 
1108 
n = allocation[ch][i]; 
1109 
if (n) {

1110 
mant = get_bits(&s>gb, n + 1);

1111 
v = l1_unscale(n, mant, scale_factors[ch][i]); 
1112 
} else {

1113 
v = 0;

1114 
} 
1115 
s>sb_samples[ch][j][i] = v; 
1116 
} 
1117 
} 
1118 
for(i=bound;i<SBLIMIT;i++) {

1119 
n = allocation[0][i];

1120 
if (n) {

1121 
mant = get_bits(&s>gb, n + 1);

1122 
v = l1_unscale(n, mant, scale_factors[0][i]);

1123 
s>sb_samples[0][j][i] = v;

1124 
v = l1_unscale(n, mant, scale_factors[1][i]);

1125 
s>sb_samples[1][j][i] = v;

1126 
} else {

1127 
s>sb_samples[0][j][i] = 0; 
1128 
s>sb_samples[1][j][i] = 0; 
1129 
} 
1130 
} 
1131 
} 
1132 
return 12; 
1133 
} 
1134  
1135 
static int mp_decode_layer2(MPADecodeContext *s) 
1136 
{ 
1137 
int sblimit; /* number of used subbands */ 
1138 
const unsigned char *alloc_table; 
1139 
int table, bit_alloc_bits, i, j, ch, bound, v;

1140 
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; 
1141 
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; 
1142 
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; 
1143 
int scale, qindex, bits, steps, k, l, m, b;

1144  
1145 
/* select decoding table */

1146 
table = ff_mpa_l2_select_table(s>bit_rate / 1000, s>nb_channels,

1147 
s>sample_rate, s>lsf); 
1148 
sblimit = ff_mpa_sblimit_table[table]; 
1149 
alloc_table = ff_mpa_alloc_tables[table]; 
1150  
1151 
if (s>mode == MPA_JSTEREO)

1152 
bound = (s>mode_ext + 1) * 4; 
1153 
else

1154 
bound = sblimit; 
1155  
1156 
dprintf(s>avctx, "bound=%d sblimit=%d\n", bound, sblimit);

1157  
1158 
/* sanity check */

1159 
if( bound > sblimit ) bound = sblimit;

1160  
1161 
/* parse bit allocation */

1162 
j = 0;

1163 
for(i=0;i<bound;i++) { 
1164 
bit_alloc_bits = alloc_table[j]; 
1165 
for(ch=0;ch<s>nb_channels;ch++) { 
1166 
bit_alloc[ch][i] = get_bits(&s>gb, bit_alloc_bits); 
1167 
} 
1168 
j += 1 << bit_alloc_bits;

1169 
} 
1170 
for(i=bound;i<sblimit;i++) {

1171 
bit_alloc_bits = alloc_table[j]; 
1172 
v = get_bits(&s>gb, bit_alloc_bits); 
1173 
bit_alloc[0][i] = v;

1174 
bit_alloc[1][i] = v;

1175 
j += 1 << bit_alloc_bits;

1176 
} 
1177  
1178 
/* scale codes */

1179 
for(i=0;i<sblimit;i++) { 
1180 
for(ch=0;ch<s>nb_channels;ch++) { 
1181 
if (bit_alloc[ch][i])

1182 
scale_code[ch][i] = get_bits(&s>gb, 2);

1183 
} 
1184 
} 
1185  
1186 
/* scale factors */

1187 
for(i=0;i<sblimit;i++) { 
1188 
for(ch=0;ch<s>nb_channels;ch++) { 
1189 
if (bit_alloc[ch][i]) {

1190 
sf = scale_factors[ch][i]; 
1191 
switch(scale_code[ch][i]) {

1192 
default:

1193 
case 0: 
1194 
sf[0] = get_bits(&s>gb, 6); 
1195 
sf[1] = get_bits(&s>gb, 6); 
1196 
sf[2] = get_bits(&s>gb, 6); 
1197 
break;

1198 
case 2: 
1199 
sf[0] = get_bits(&s>gb, 6); 
1200 
sf[1] = sf[0]; 
1201 
sf[2] = sf[0]; 
1202 
break;

1203 
case 1: 
1204 
sf[0] = get_bits(&s>gb, 6); 
1205 
sf[2] = get_bits(&s>gb, 6); 
1206 
sf[1] = sf[0]; 
1207 
break;

1208 
case 3: 
1209 
sf[0] = get_bits(&s>gb, 6); 
1210 
sf[2] = get_bits(&s>gb, 6); 
1211 
sf[1] = sf[2]; 
1212 
break;

1213 
} 
1214 
} 
1215 
} 
1216 
} 
1217  
1218 
/* samples */

1219 
for(k=0;k<3;k++) { 
1220 
for(l=0;l<12;l+=3) { 
1221 
j = 0;

1222 
for(i=0;i<bound;i++) { 
1223 
bit_alloc_bits = alloc_table[j]; 
1224 
for(ch=0;ch<s>nb_channels;ch++) { 
1225 
b = bit_alloc[ch][i]; 
1226 
if (b) {

1227 
scale = scale_factors[ch][i][k]; 
1228 
qindex = alloc_table[j+b]; 
1229 
bits = ff_mpa_quant_bits[qindex]; 
1230 
if (bits < 0) { 
1231 
/* 3 values at the same time */

1232 
v = get_bits(&s>gb, bits); 
1233 
steps = ff_mpa_quant_steps[qindex]; 
1234 
s>sb_samples[ch][k * 12 + l + 0][i] = 
1235 
l2_unscale_group(steps, v % steps, scale); 
1236 
v = v / steps; 
1237 
s>sb_samples[ch][k * 12 + l + 1][i] = 
1238 
l2_unscale_group(steps, v % steps, scale); 
1239 
v = v / steps; 
1240 
s>sb_samples[ch][k * 12 + l + 2][i] = 
1241 
l2_unscale_group(steps, v, scale); 
1242 
} else {

1243 
for(m=0;m<3;m++) { 
1244 
v = get_bits(&s>gb, bits); 
1245 
v = l1_unscale(bits  1, v, scale);

1246 
s>sb_samples[ch][k * 12 + l + m][i] = v;

1247 
} 
1248 
} 
1249 
} else {

1250 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1251 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1252 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1253 
} 
1254 
} 
1255 
/* next subband in alloc table */

1256 
j += 1 << bit_alloc_bits;

1257 
} 
1258 
/* XXX: find a way to avoid this duplication of code */

1259 
for(i=bound;i<sblimit;i++) {

1260 
bit_alloc_bits = alloc_table[j]; 
1261 
b = bit_alloc[0][i];

1262 
if (b) {

1263 
int mant, scale0, scale1;

1264 
scale0 = scale_factors[0][i][k];

1265 
scale1 = scale_factors[1][i][k];

1266 
qindex = alloc_table[j+b]; 
1267 
bits = ff_mpa_quant_bits[qindex]; 
1268 
if (bits < 0) { 
1269 
/* 3 values at the same time */

1270 
v = get_bits(&s>gb, bits); 
1271 
steps = ff_mpa_quant_steps[qindex]; 
1272 
mant = v % steps; 
1273 
v = v / steps; 
1274 
s>sb_samples[0][k * 12 + l + 0][i] = 
1275 
l2_unscale_group(steps, mant, scale0); 
1276 
s>sb_samples[1][k * 12 + l + 0][i] = 
1277 
l2_unscale_group(steps, mant, scale1); 
1278 
mant = v % steps; 
1279 
v = v / steps; 
1280 
s>sb_samples[0][k * 12 + l + 1][i] = 
1281 
l2_unscale_group(steps, mant, scale0); 
1282 
s>sb_samples[1][k * 12 + l + 1][i] = 
1283 
l2_unscale_group(steps, mant, scale1); 
1284 
s>sb_samples[0][k * 12 + l + 2][i] = 
1285 
l2_unscale_group(steps, v, scale0); 
1286 
s>sb_samples[1][k * 12 + l + 2][i] = 
1287 
l2_unscale_group(steps, v, scale1); 
1288 
} else {

1289 
for(m=0;m<3;m++) { 
1290 
mant = get_bits(&s>gb, bits); 
1291 
s>sb_samples[0][k * 12 + l + m][i] = 
1292 
l1_unscale(bits  1, mant, scale0);

1293 
s>sb_samples[1][k * 12 + l + m][i] = 
1294 
l1_unscale(bits  1, mant, scale1);

1295 
} 
1296 
} 
1297 
} else {

1298 
s>sb_samples[0][k * 12 + l + 0][i] = 0; 
1299 
s>sb_samples[0][k * 12 + l + 1][i] = 0; 
1300 
s>sb_samples[0][k * 12 + l + 2][i] = 0; 
1301 
s>sb_samples[1][k * 12 + l + 0][i] = 0; 
1302 
s>sb_samples[1][k * 12 + l + 1][i] = 0; 
1303 
s>sb_samples[1][k * 12 + l + 2][i] = 0; 
1304 
} 
1305 
/* next subband in alloc table */

1306 
j += 1 << bit_alloc_bits;

1307 
} 
1308 
/* fill remaining samples to zero */

1309 
for(i=sblimit;i<SBLIMIT;i++) {

1310 
for(ch=0;ch<s>nb_channels;ch++) { 
1311 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1312 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1313 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1314 
} 
1315 
} 
1316 
} 
1317 
} 
1318 
return 3 * 12; 
1319 
} 
1320  
1321 
#define SPLIT(dst,sf,n)\

1322 
if(n==3){\ 
1323 
int m= (sf*171)>>9;\ 
1324 
dst= sf  3*m;\

1325 
sf=m;\ 
1326 
}else if(n==4){\ 
1327 
dst= sf&3;\

1328 
sf>>=2;\

1329 
}else if(n==5){\ 
1330 
int m= (sf*205)>>10;\ 
1331 
dst= sf  5*m;\

1332 
sf=m;\ 
1333 
}else if(n==6){\ 
1334 
int m= (sf*171)>>10;\ 
1335 
dst= sf  6*m;\

1336 
sf=m;\ 
1337 
}else{\

1338 
dst=0;\

1339 
} 
1340  
1341 
static av_always_inline void lsf_sf_expand(int *slen, 
1342 
int sf, int n1, int n2, int n3) 
1343 
{ 
1344 
SPLIT(slen[3], sf, n3)

1345 
SPLIT(slen[2], sf, n2)

1346 
SPLIT(slen[1], sf, n1)

1347 
slen[0] = sf;

1348 
} 
1349  
1350 
static void exponents_from_scale_factors(MPADecodeContext *s, 
1351 
GranuleDef *g, 
1352 
int16_t *exponents) 
1353 
{ 
1354 
const uint8_t *bstab, *pretab;

1355 
int len, i, j, k, l, v0, shift, gain, gains[3]; 
1356 
int16_t *exp_ptr; 
1357  
1358 
exp_ptr = exponents; 
1359 
gain = g>global_gain  210;

1360 
shift = g>scalefac_scale + 1;

1361  
1362 
bstab = band_size_long[s>sample_rate_index]; 
1363 
pretab = mpa_pretab[g>preflag]; 
1364 
for(i=0;i<g>long_end;i++) { 
1365 
v0 = gain  ((g>scale_factors[i] + pretab[i]) << shift) + 400;

1366 
len = bstab[i]; 
1367 
for(j=len;j>0;j) 
1368 
*exp_ptr++ = v0; 
1369 
} 
1370  
1371 
if (g>short_start < 13) { 
1372 
bstab = band_size_short[s>sample_rate_index]; 
1373 
gains[0] = gain  (g>subblock_gain[0] << 3); 
1374 
gains[1] = gain  (g>subblock_gain[1] << 3); 
1375 
gains[2] = gain  (g>subblock_gain[2] << 3); 
1376 
k = g>long_end; 
1377 
for(i=g>short_start;i<13;i++) { 
1378 
len = bstab[i]; 
1379 
for(l=0;l<3;l++) { 
1380 
v0 = gains[l]  (g>scale_factors[k++] << shift) + 400;

1381 
for(j=len;j>0;j) 
1382 
*exp_ptr++ = v0; 
1383 
} 
1384 
} 
1385 
} 
1386 
} 
1387  
1388 
/* handle n = 0 too */

1389 
static inline int get_bitsz(GetBitContext *s, int n) 
1390 
{ 
1391 
if (n == 0) 
1392 
return 0; 
1393 
else

1394 
return get_bits(s, n);

1395 
} 
1396  
1397  
1398 
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ 
1399 
if(s>in_gb.buffer && *pos >= s>gb.size_in_bits){

1400 
s>gb= s>in_gb; 
1401 
s>in_gb.buffer=NULL;

1402 
assert((get_bits_count(&s>gb) & 7) == 0); 
1403 
skip_bits_long(&s>gb, *pos  *end_pos); 
1404 
*end_pos2= 
1405 
*end_pos= *end_pos2 + get_bits_count(&s>gb)  *pos; 
1406 
*pos= get_bits_count(&s>gb); 
1407 
} 
1408 
} 
1409  
1410 
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, 
1411 
int16_t *exponents, int end_pos2)

1412 
{ 
1413 
int s_index;

1414 
int i;

1415 
int last_pos, bits_left;

1416 
VLC *vlc; 
1417 
int end_pos= FFMIN(end_pos2, s>gb.size_in_bits);

1418  
1419 
/* low frequencies (called big values) */

1420 
s_index = 0;

1421 
for(i=0;i<3;i++) { 
1422 
int j, k, l, linbits;

1423 
j = g>region_size[i]; 
1424 
if (j == 0) 
1425 
continue;

1426 
/* select vlc table */

1427 
k = g>table_select[i]; 
1428 
l = mpa_huff_data[k][0];

1429 
linbits = mpa_huff_data[k][1];

1430 
vlc = &huff_vlc[l]; 
1431  
1432 
if(!l){

1433 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*2*j); 
1434 
s_index += 2*j;

1435 
continue;

1436 
} 
1437  
1438 
/* read huffcode and compute each couple */

1439 
for(;j>0;j) { 
1440 
int exponent, x, y;

1441 
INTFLOAT v; 
1442 
int pos= get_bits_count(&s>gb);

1443  
1444 
if (pos >= end_pos){

1445 
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1446 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1447 
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);

1448 
if(pos >= end_pos)

1449 
break;

1450 
} 
1451 
y = get_vlc2(&s>gb, vlc>table, 7, 3); 
1452  
1453 
if(!y){

1454 
g>sb_hybrid[s_index ] = 
1455 
g>sb_hybrid[s_index+1] = 0; 
1456 
s_index += 2;

1457 
continue;

1458 
} 
1459  
1460 
exponent= exponents[s_index]; 
1461  
1462 
dprintf(s>avctx, "region=%d n=%d x=%d y=%d exp=%d\n",

1463 
i, g>region_size[i]  j, x, y, exponent); 
1464 
if(y&16){ 
1465 
x = y >> 5;

1466 
y = y & 0x0f;

1467 
if (x < 15){ 
1468 
v = RENAME(expval_table)[ exponent ][ x ]; 
1469 
// v = RENAME(expval_table)[ (exponent&3) ][ x ] >> FFMIN(0  (exponent>>2), 31);

1470 
}else{

1471 
x += get_bitsz(&s>gb, linbits); 
1472 
v = l3_unscale(x, exponent); 
1473 
} 
1474 
if (get_bits1(&s>gb))

1475 
v = v; 
1476 
g>sb_hybrid[s_index] = v; 
1477 
if (y < 15){ 
1478 
v = RENAME(expval_table)[ exponent ][ y ]; 
1479 
}else{

1480 
y += get_bitsz(&s>gb, linbits); 
1481 
v = l3_unscale(y, exponent); 
1482 
} 
1483 
if (get_bits1(&s>gb))

1484 
v = v; 
1485 
g>sb_hybrid[s_index+1] = v;

1486 
}else{

1487 
x = y >> 5;

1488 
y = y & 0x0f;

1489 
x += y; 
1490 
if (x < 15){ 
1491 
v = RENAME(expval_table)[ exponent ][ x ]; 
1492 
}else{

1493 
x += get_bitsz(&s>gb, linbits); 
1494 
v = l3_unscale(x, exponent); 
1495 
} 
1496 
if (get_bits1(&s>gb))

1497 
v = v; 
1498 
g>sb_hybrid[s_index+!!y] = v; 
1499 
g>sb_hybrid[s_index+ !y] = 0;

1500 
} 
1501 
s_index+=2;

1502 
} 
1503 
} 
1504  
1505 
/* high frequencies */

1506 
vlc = &huff_quad_vlc[g>count1table_select]; 
1507 
last_pos=0;

1508 
while (s_index <= 572) { 
1509 
int pos, code;

1510 
pos = get_bits_count(&s>gb); 
1511 
if (pos >= end_pos) {

1512 
if (pos > end_pos2 && last_pos){

1513 
/* some encoders generate an incorrect size for this

1514 
part. We must go back into the data */

1515 
s_index = 4;

1516 
skip_bits_long(&s>gb, last_pos  pos); 
1517 
av_log(s>avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos  pos, end_pospos, end_pos2pos);

1518 
if(s>error_recognition >= FF_ER_COMPLIANT)

1519 
s_index=0;

1520 
break;

1521 
} 
1522 
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1523 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1524 
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);

1525 
if(pos >= end_pos)

1526 
break;

1527 
} 
1528 
last_pos= pos; 
1529  
1530 
code = get_vlc2(&s>gb, vlc>table, vlc>bits, 1);

1531 
dprintf(s>avctx, "t=%d code=%d\n", g>count1table_select, code);

1532 
g>sb_hybrid[s_index+0]=

1533 
g>sb_hybrid[s_index+1]=

1534 
g>sb_hybrid[s_index+2]=

1535 
g>sb_hybrid[s_index+3]= 0; 
1536 
while(code){

1537 
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; 
1538 
INTFLOAT v; 
1539 
int pos= s_index+idxtab[code];

1540 
code ^= 8>>idxtab[code];

1541 
v = RENAME(exp_table)[ exponents[pos] ]; 
1542 
// v = RENAME(exp_table)[ (exponents[pos]&3) ] >> FFMIN(0  (exponents[pos]>>2), 31);

1543 
if(get_bits1(&s>gb)) //FIXME try to flip the sign bit in int32_t, same above 
1544 
v = v; 
1545 
g>sb_hybrid[pos] = v; 
1546 
} 
1547 
s_index+=4;

1548 
} 
1549 
/* skip extension bits */

1550 
bits_left = end_pos2  get_bits_count(&s>gb); 
1551 
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s>in_gb.buffer);

1552 
if (bits_left < 0 && s>error_recognition >= FF_ER_COMPLIANT) { 
1553 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1554 
s_index=0;

1555 
}else if(bits_left > 0 && s>error_recognition >= FF_ER_AGGRESSIVE){ 
1556 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1557 
s_index=0;

1558 
} 
1559 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*(576  s_index)); 
1560 
skip_bits_long(&s>gb, bits_left); 
1561  
1562 
i= get_bits_count(&s>gb); 
1563 
switch_buffer(s, &i, &end_pos, &end_pos2); 
1564  
1565 
return 0; 
1566 
} 
1567  
1568 
/* Reorder short blocks from bitstream order to interleaved order. It

1569 
would be faster to do it in parsing, but the code would be far more

1570 
complicated */

1571 
static void reorder_block(MPADecodeContext *s, GranuleDef *g) 
1572 
{ 
1573 
int i, j, len;

1574 
INTFLOAT *ptr, *dst, *ptr1; 
1575 
INTFLOAT tmp[576];

1576  
1577 
if (g>block_type != 2) 
1578 
return;

1579  
1580 
if (g>switch_point) {

1581 
if (s>sample_rate_index != 8) { 
1582 
ptr = g>sb_hybrid + 36;

1583 
} else {

1584 
ptr = g>sb_hybrid + 48;

1585 
} 
1586 
} else {

1587 
ptr = g>sb_hybrid; 
1588 
} 
1589  
1590 
for(i=g>short_start;i<13;i++) { 
1591 
len = band_size_short[s>sample_rate_index][i]; 
1592 
ptr1 = ptr; 
1593 
dst = tmp; 
1594 
for(j=len;j>0;j) { 
1595 
*dst++ = ptr[0*len];

1596 
*dst++ = ptr[1*len];

1597 
*dst++ = ptr[2*len];

1598 
ptr++; 
1599 
} 
1600 
ptr+=2*len;

1601 
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); 
1602 
} 
1603 
} 
1604  
1605 
#define ISQRT2 FIXR(0.70710678118654752440) 
1606  
1607 
static void compute_stereo(MPADecodeContext *s, 
1608 
GranuleDef *g0, GranuleDef *g1) 
1609 
{ 
1610 
int i, j, k, l;

1611 
int sf_max, sf, len, non_zero_found;

1612 
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;

1613 
int non_zero_found_short[3]; 
1614  
1615 
/* intensity stereo */

1616 
if (s>mode_ext & MODE_EXT_I_STEREO) {

1617 
if (!s>lsf) {

1618 
is_tab = is_table; 
1619 
sf_max = 7;

1620 
} else {

1621 
is_tab = is_table_lsf[g1>scalefac_compress & 1];

1622 
sf_max = 16;

1623 
} 
1624  
1625 
tab0 = g0>sb_hybrid + 576;

1626 
tab1 = g1>sb_hybrid + 576;

1627  
1628 
non_zero_found_short[0] = 0; 
1629 
non_zero_found_short[1] = 0; 
1630 
non_zero_found_short[2] = 0; 
1631 
k = (13  g1>short_start) * 3 + g1>long_end  3; 
1632 
for(i = 12;i >= g1>short_start;i) { 
1633 
/* for last band, use previous scale factor */

1634 
if (i != 11) 
1635 
k = 3;

1636 
len = band_size_short[s>sample_rate_index][i]; 
1637 
for(l=2;l>=0;l) { 
1638 
tab0 = len; 
1639 
tab1 = len; 
1640 
if (!non_zero_found_short[l]) {

1641 
/* test if non zero band. if so, stop doing istereo */

1642 
for(j=0;j<len;j++) { 
1643 
if (tab1[j] != 0) { 
1644 
non_zero_found_short[l] = 1;

1645 
goto found1;

1646 
} 
1647 
} 
1648 
sf = g1>scale_factors[k + l]; 
1649 
if (sf >= sf_max)

1650 
goto found1;

1651  
1652 
v1 = is_tab[0][sf];

1653 
v2 = is_tab[1][sf];

1654 
for(j=0;j<len;j++) { 
1655 
tmp0 = tab0[j]; 
1656 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1657 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1658 
} 
1659 
} else {

1660 
found1:

1661 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1662 
/* lower part of the spectrum : do ms stereo

1663 
if enabled */

1664 
for(j=0;j<len;j++) { 
1665 
tmp0 = tab0[j]; 
1666 
tmp1 = tab1[j]; 
1667 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1668 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1669 
} 
1670 
} 
1671 
} 
1672 
} 
1673 
} 
1674  
1675 
non_zero_found = non_zero_found_short[0] 

1676 
non_zero_found_short[1] 

1677 
non_zero_found_short[2];

1678  
1679 
for(i = g1>long_end  1;i >= 0;i) { 
1680 
len = band_size_long[s>sample_rate_index][i]; 
1681 
tab0 = len; 
1682 
tab1 = len; 
1683 
/* test if non zero band. if so, stop doing istereo */

1684 
if (!non_zero_found) {

1685 
for(j=0;j<len;j++) { 
1686 
if (tab1[j] != 0) { 
1687 
non_zero_found = 1;

1688 
goto found2;

1689 
} 
1690 
} 
1691 
/* for last band, use previous scale factor */

1692 
k = (i == 21) ? 20 : i; 
1693 
sf = g1>scale_factors[k]; 
1694 
if (sf >= sf_max)

1695 
goto found2;

1696 
v1 = is_tab[0][sf];

1697 
v2 = is_tab[1][sf];

1698 
for(j=0;j<len;j++) { 
1699 
tmp0 = tab0[j]; 
1700 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1701 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1702 
} 
1703 
} else {

1704 
found2:

1705 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1706 
/* lower part of the spectrum : do ms stereo

1707 
if enabled */

1708 
for(j=0;j<len;j++) { 
1709 
tmp0 = tab0[j]; 
1710 
tmp1 = tab1[j]; 
1711 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1712 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1713 
} 
1714 
} 
1715 
} 
1716 
} 
1717 
} else if (s>mode_ext & MODE_EXT_MS_STEREO) { 
1718 
/* ms stereo ONLY */

1719 
/* NOTE: the 1/sqrt(2) normalization factor is included in the

1720 
global gain */

1721 
tab0 = g0>sb_hybrid; 
1722 
tab1 = g1>sb_hybrid; 
1723 
for(i=0;i<576;i++) { 
1724 
tmp0 = tab0[i]; 
1725 
tmp1 = tab1[i]; 
1726 
tab0[i] = tmp0 + tmp1; 
1727 
tab1[i] = tmp0  tmp1; 
1728 
} 
1729 
} 
1730 
} 
1731  
1732 
static void compute_antialias_integer(MPADecodeContext *s, 
1733 
GranuleDef *g) 
1734 
{ 
1735 
int32_t *ptr, *csa; 
1736 
int n, i;

1737  
1738 
/* we antialias only "long" bands */

1739 
if (g>block_type == 2) { 
1740 
if (!g>switch_point)

1741 
return;

1742 
/* XXX: check this for 8000Hz case */

1743 
n = 1;

1744 
} else {

1745 
n = SBLIMIT  1;

1746 
} 
1747  
1748 
ptr = g>sb_hybrid + 18;

1749 
for(i = n;i > 0;i) { 
1750 
int tmp0, tmp1, tmp2;

1751 
csa = &csa_table[0][0]; 
1752 
#define INT_AA(j) \

1753 
tmp0 = ptr[1j];\

1754 
tmp1 = ptr[ j];\ 
1755 
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ 
1756 
ptr[1j] = 4*(tmp2  MULH(tmp1, csa[2+4*j]));\ 
1757 
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); 
1758  
1759 
INT_AA(0)

1760 
INT_AA(1)

1761 
INT_AA(2)

1762 
INT_AA(3)

1763 
INT_AA(4)

1764 
INT_AA(5)

1765 
INT_AA(6)

1766 
INT_AA(7)

1767  
1768 
ptr += 18;

1769 
} 
1770 
} 
1771  
1772 
static void compute_antialias_float(MPADecodeContext *s, 
1773 
GranuleDef *g) 
1774 
{ 
1775 
float *ptr;

1776 
int n, i;

1777  
1778 
/* we antialias only "long" bands */

1779 
if (g>block_type == 2) { 
1780 
if (!g>switch_point)

1781 
return;

1782 
/* XXX: check this for 8000Hz case */

1783 
n = 1;

1784 
} else {

1785 
n = SBLIMIT  1;

1786 
} 
1787  
1788 
ptr = g>sb_hybrid + 18;

1789 
for(i = n;i > 0;i) { 
1790 
float tmp0, tmp1;

1791 
float *csa = &csa_table_float[0][0]; 
1792 
#define FLOAT_AA(j)\

1793 
tmp0= ptr[1j];\

1794 
tmp1= ptr[ j];\ 
1795 
ptr[1j] = tmp0 * csa[0+4*j]  tmp1 * csa[1+4*j];\ 
1796 
ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]; 
1797  
1798 
FLOAT_AA(0)

1799 
FLOAT_AA(1)

1800 
FLOAT_AA(2)

1801 
FLOAT_AA(3)

1802 
FLOAT_AA(4)

1803 
FLOAT_AA(5)

1804 
FLOAT_AA(6)

1805 
FLOAT_AA(7)

1806  
1807 
ptr += 18;

1808 
} 
1809 
} 
1810  
1811 
static void compute_imdct(MPADecodeContext *s, 
1812 
GranuleDef *g, 
1813 
INTFLOAT *sb_samples, 
1814 
INTFLOAT *mdct_buf) 
1815 
{ 
1816 
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; 
1817 
INTFLOAT out2[12];

1818 
int i, j, mdct_long_end, sblimit;

1819  
1820 
/* find last non zero block */

1821 
ptr = g>sb_hybrid + 576;

1822 
ptr1 = g>sb_hybrid + 2 * 18; 
1823 
while (ptr >= ptr1) {

1824 
int32_t *p; 
1825 
ptr = 6;

1826 
p= (int32_t*)ptr; 
1827 
if(p[0]  p[1]  p[2]  p[3]  p[4]  p[5]) 
1828 
break;

1829 
} 
1830 
sblimit = ((ptr  g>sb_hybrid) / 18) + 1; 
1831  
1832 
if (g>block_type == 2) { 
1833 
/* XXX: check for 8000 Hz */

1834 
if (g>switch_point)

1835 
mdct_long_end = 2;

1836 
else

1837 
mdct_long_end = 0;

1838 
} else {

1839 
mdct_long_end = sblimit; 
1840 
} 
1841  
1842 
buf = mdct_buf; 
1843 
ptr = g>sb_hybrid; 
1844 
for(j=0;j<mdct_long_end;j++) { 
1845 
/* apply window & overlap with previous buffer */

1846 
out_ptr = sb_samples + j; 
1847 
/* select window */

1848 
if (g>switch_point && j < 2) 
1849 
win1 = mdct_win[0];

1850 
else

1851 
win1 = mdct_win[g>block_type]; 
1852 
/* select frequency inversion */

1853 
win = win1 + ((4 * 36) & (j & 1)); 
1854 
imdct36(out_ptr, buf, ptr, win); 
1855 
out_ptr += 18*SBLIMIT;

1856 
ptr += 18;

1857 
buf += 18;

1858 
} 
1859 
for(j=mdct_long_end;j<sblimit;j++) {

1860 
/* select frequency inversion */

1861 
win = mdct_win[2] + ((4 * 36) & (j & 1)); 
1862 
out_ptr = sb_samples + j; 
1863  
1864 
for(i=0; i<6; i++){ 
1865 
*out_ptr = buf[i]; 
1866 
out_ptr += SBLIMIT; 
1867 
} 
1868 
imdct12(out2, ptr + 0);

1869 
for(i=0;i<6;i++) { 
1870 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; 
1871 
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); 
1872 
out_ptr += SBLIMIT; 
1873 
} 
1874 
imdct12(out2, ptr + 1);

1875 
for(i=0;i<6;i++) { 
1876 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; 
1877 
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); 
1878 
out_ptr += SBLIMIT; 
1879 
} 
1880 
imdct12(out2, ptr + 2);

1881 
for(i=0;i<6;i++) { 
1882 
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; 
1883 
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); 
1884 
buf[i + 6*2] = 0; 
1885 
} 
1886 
ptr += 18;

1887 
buf += 18;

1888 
} 
1889 
/* zero bands */

1890 
for(j=sblimit;j<SBLIMIT;j++) {

1891 
/* overlap */

1892 
out_ptr = sb_samples + j; 
1893 
for(i=0;i<18;i++) { 
1894 
*out_ptr = buf[i]; 
1895 
buf[i] = 0;

1896 
out_ptr += SBLIMIT; 
1897 
} 
1898 
buf += 18;

1899 
} 
1900 
} 
1901  
1902 
/* main layer3 decoding function */

1903 
static int mp_decode_layer3(MPADecodeContext *s) 
1904 
{ 
1905 
int nb_granules, main_data_begin, private_bits;

1906 
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;

1907 
GranuleDef *g; 
1908 
int16_t exponents[576]; //FIXME try INTFLOAT 
1909  
1910 
/* read side info */

1911 
if (s>lsf) {

1912 
main_data_begin = get_bits(&s>gb, 8);

1913 
private_bits = get_bits(&s>gb, s>nb_channels); 
1914 
nb_granules = 1;

1915 
} else {

1916 
main_data_begin = get_bits(&s>gb, 9);

1917 
if (s>nb_channels == 2) 
1918 
private_bits = get_bits(&s>gb, 3);

1919 
else

1920 
private_bits = get_bits(&s>gb, 5);

1921 
nb_granules = 2;

1922 
for(ch=0;ch<s>nb_channels;ch++) { 
1923 
s>granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ 
1924 
s>granules[ch][1].scfsi = get_bits(&s>gb, 4); 
1925 
} 
1926 
} 
1927  
1928 
for(gr=0;gr<nb_granules;gr++) { 
1929 
for(ch=0;ch<s>nb_channels;ch++) { 
1930 
dprintf(s>avctx, "gr=%d ch=%d: side_info\n", gr, ch);

1931 
g = &s>granules[ch][gr]; 
1932 
g>part2_3_length = get_bits(&s>gb, 12);

1933 
g>big_values = get_bits(&s>gb, 9);

1934 
if(g>big_values > 288){ 
1935 
av_log(s>avctx, AV_LOG_ERROR, "big_values too big\n");

1936 
return 1; 
1937 
} 
1938  
1939 
g>global_gain = get_bits(&s>gb, 8);

1940 
/* if MS stereo only is selected, we precompute the

1941 
1/sqrt(2) renormalization factor */

1942 
if ((s>mode_ext & (MODE_EXT_MS_STEREO  MODE_EXT_I_STEREO)) ==

1943 
MODE_EXT_MS_STEREO) 
1944 
g>global_gain = 2;

1945 
if (s>lsf)

1946 
g>scalefac_compress = get_bits(&s>gb, 9);

1947 
else

1948 
g>scalefac_compress = get_bits(&s>gb, 4);

1949 
blocksplit_flag = get_bits1(&s>gb); 
1950 
if (blocksplit_flag) {

1951 
g>block_type = get_bits(&s>gb, 2);

1952 
if (g>block_type == 0){ 
1953 
av_log(s>avctx, AV_LOG_ERROR, "invalid block type\n");

1954 
return 1; 
1955 
} 
1956 
g>switch_point = get_bits1(&s>gb); 
1957 
for(i=0;i<2;i++) 
1958 
g>table_select[i] = get_bits(&s>gb, 5);

1959 
for(i=0;i<3;i++) 
1960 
g>subblock_gain[i] = get_bits(&s>gb, 3);

1961 
ff_init_short_region(s, g); 
1962 
} else {

1963 
int region_address1, region_address2;

1964 
g>block_type = 0;

1965 
g>switch_point = 0;

1966 
for(i=0;i<3;i++) 
1967 
g>table_select[i] = get_bits(&s>gb, 5);

1968 
/* compute huffman coded region sizes */

1969 
region_address1 = get_bits(&s>gb, 4);

1970 
region_address2 = get_bits(&s>gb, 3);

1971 
dprintf(s>avctx, "region1=%d region2=%d\n",

1972 
region_address1, region_address2); 
1973 
ff_init_long_region(s, g, region_address1, region_address2); 
1974 
} 
1975 
ff_region_offset2size(g); 
1976 
ff_compute_band_indexes(s, g); 
1977  
1978 
g>preflag = 0;

1979 
if (!s>lsf)

1980 
g>preflag = get_bits1(&s>gb); 
1981 
g>scalefac_scale = get_bits1(&s>gb); 
1982 
g>count1table_select = get_bits1(&s>gb); 
1983 
dprintf(s>avctx, "block_type=%d switch_point=%d\n",

1984 
g>block_type, g>switch_point); 
1985 
} 
1986 
} 
1987  
1988 
if (!s>adu_mode) {

1989 
const uint8_t *ptr = s>gb.buffer + (get_bits_count(&s>gb)>>3); 
1990 
assert((get_bits_count(&s>gb) & 7) == 0); 
1991 
/* now we get bits from the main_data_begin offset */

1992 
dprintf(s>avctx, "seekback: %d\n", main_data_begin);

1993 
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s>last_buf_size);

1994  
1995 
memcpy(s>last_buf + s>last_buf_size, ptr, EXTRABYTES); 
1996 
s>in_gb= s>gb; 
1997 
init_get_bits(&s>gb, s>last_buf, s>last_buf_size*8);

1998 
skip_bits_long(&s>gb, 8*(s>last_buf_size  main_data_begin));

1999 
} 
2000  
2001 
for(gr=0;gr<nb_granules;gr++) { 
2002 
for(ch=0;ch<s>nb_channels;ch++) { 
2003 
g = &s>granules[ch][gr]; 
2004 
if(get_bits_count(&s>gb)<0){ 
2005 
av_log(s>avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",

2006 
main_data_begin, s>last_buf_size, gr); 
2007 
skip_bits_long(&s>gb, g>part2_3_length); 
2008 
memset(g>sb_hybrid, 0, sizeof(g>sb_hybrid)); 
2009 
if(get_bits_count(&s>gb) >= s>gb.size_in_bits && s>in_gb.buffer){

2010 
skip_bits_long(&s>in_gb, get_bits_count(&s>gb)  s>gb.size_in_bits); 
2011 
s>gb= s>in_gb; 
2012 
s>in_gb.buffer=NULL;

2013 
} 
2014 
continue;

2015 
} 
2016  
2017 
bits_pos = get_bits_count(&s>gb); 
2018  
2019 
if (!s>lsf) {

2020 
uint8_t *sc; 
2021 
int slen, slen1, slen2;

2022  
2023 
/* MPEG1 scale factors */

2024 
slen1 = slen_table[0][g>scalefac_compress];

2025 
slen2 = slen_table[1][g>scalefac_compress];

2026 
dprintf(s>avctx, "slen1=%d slen2=%d\n", slen1, slen2);

2027 
if (g>block_type == 2) { 
2028 
n = g>switch_point ? 17 : 18; 
2029 
j = 0;

2030 
if(slen1){

2031 
for(i=0;i<n;i++) 
2032 
g>scale_factors[j++] = get_bits(&s>gb, slen1); 
2033 
}else{

2034 
for(i=0;i<n;i++) 
2035 
g>scale_factors[j++] = 0;

2036 
} 
2037 
if(slen2){

2038 
for(i=0;i<18;i++) 
2039 
g>scale_factors[j++] = get_bits(&s>gb, slen2); 
2040 
for(i=0;i<3;i++) 
2041 
g>scale_factors[j++] = 0;

2042 
}else{

2043 
for(i=0;i<21;i++) 
2044 
g>scale_factors[j++] = 0;

2045 
} 
2046 
} else {

2047 
sc = s>granules[ch][0].scale_factors;

2048 
j = 0;

2049 
for(k=0;k<4;k++) { 
2050 
n = (k == 0 ? 6 : 5); 
2051 
if ((g>scfsi & (0x8 >> k)) == 0) { 
2052 
slen = (k < 2) ? slen1 : slen2;

2053 
if(slen){

2054 
for(i=0;i<n;i++) 
2055 
g>scale_factors[j++] = get_bits(&s>gb, slen); 
2056 
}else{

2057 
for(i=0;i<n;i++) 
2058 
g>scale_factors[j++] = 0;

2059 
} 
2060 
} else {

2061 
/* simply copy from last granule */

2062 
for(i=0;i<n;i++) { 
2063 
g>scale_factors[j] = sc[j]; 
2064 
j++; 
2065 
} 
2066 
} 
2067 
} 
2068 
g>scale_factors[j++] = 0;

2069 
} 
2070 
} else {

2071 
int tindex, tindex2, slen[4], sl, sf; 
2072  
2073 
/* LSF scale factors */

2074 
if (g>block_type == 2) { 
2075 
tindex = g>switch_point ? 2 : 1; 
2076 
} else {

2077 
tindex = 0;

2078 
} 
2079 
sf = g>scalefac_compress; 
2080 
if ((s>mode_ext & MODE_EXT_I_STEREO) && ch == 1) { 
2081 
/* intensity stereo case */

2082 
sf >>= 1;

2083 
if (sf < 180) { 
2084 
lsf_sf_expand(slen, sf, 6, 6, 0); 
2085 
tindex2 = 3;

2086 
} else if (sf < 244) { 
2087 
lsf_sf_expand(slen, sf  180, 4, 4, 0); 
2088 
tindex2 = 4;

2089 
} else {

2090 
lsf_sf_expand(slen, sf  244, 3, 0, 0); 
2091 
tindex2 = 5;

2092 
} 
2093 
} else {

2094 
/* normal case */

2095 
if (sf < 400) { 
2096 
lsf_sf_expand(slen, sf, 5, 4, 4); 
2097 
tindex2 = 0;

2098 
} else if (sf < 500) { 
2099 
lsf_sf_expand(slen, sf  400, 5, 4, 0); 
2100 
tindex2 = 1;

2101 
} else {

2102 
lsf_sf_expand(slen, sf  500, 3, 0, 0); 
2103 
tindex2 = 2;

2104 
g>preflag = 1;

2105 
} 
2106 
} 
2107  
2108 
j = 0;

2109 
for(k=0;k<4;k++) { 
2110 
n = lsf_nsf_table[tindex2][tindex][k]; 
2111 
sl = slen[k]; 
2112 
if(sl){

2113 
for(i=0;i<n;i++) 
2114 
g>scale_factors[j++] = get_bits(&s>gb, sl); 
2115 
}else{

2116 
for(i=0;i<n;i++) 
2117 
g>scale_factors[j++] = 0;

2118 
} 
2119 
} 
2120 
/* XXX: should compute exact size */

2121 
for(;j<40;j++) 
2122 
g>scale_factors[j] = 0;

2123 
} 
2124  
2125 
exponents_from_scale_factors(s, g, exponents); 
2126  
2127 
/* read Huffman coded residue */

2128 
huffman_decode(s, g, exponents, bits_pos + g>part2_3_length); 
2129 
} /* ch */

2130  
2131 
if (s>nb_channels == 2) 
2132 
compute_stereo(s, &s>granules[0][gr], &s>granules[1][gr]); 
2133  
2134 
for(ch=0;ch<s>nb_channels;ch++) { 
2135 
g = &s>granules[ch][gr]; 
2136  
2137 
reorder_block(s, g); 
2138 
compute_antialias(s, g); 
2139 
compute_imdct(s, g, &s>sb_samples[ch][18 * gr][0], s>mdct_buf[ch]); 
2140 
} 
2141 
} /* gr */

2142 
if(get_bits_count(&s>gb)<0) 
2143 
skip_bits_long(&s>gb, get_bits_count(&s>gb)); 
2144 
return nb_granules * 18; 
2145 
} 
2146  
2147 
static int mp_decode_frame(MPADecodeContext *s, 
2148 
OUT_INT *samples, const uint8_t *buf, int buf_size) 
2149 
{ 
2150 
int i, nb_frames, ch;

2151 
OUT_INT *samples_ptr; 
2152  
2153 
init_get_bits(&s>gb, buf + HEADER_SIZE, (buf_size  HEADER_SIZE)*8);

2154  
2155 
/* skip error protection field */

2156 
if (s>error_protection)

2157 
skip_bits(&s>gb, 16);

2158  
2159 
dprintf(s>avctx, "frame %d:\n", s>frame_count);

2160 
switch(s>layer) {

2161 
case 1: 
2162 
s>avctx>frame_size = 384;

2163 
nb_frames = mp_decode_layer1(s); 
2164 
break;

2165 
case 2: 
2166 
s>avctx>frame_size = 1152;

2167 
nb_frames = mp_decode_layer2(s); 
2168 
break;

2169 
case 3: 
2170 
s>avctx>frame_size = s>lsf ? 576 : 1152; 
2171 
default:

2172 
nb_frames = mp_decode_layer3(s); 
2173  
2174 
s>last_buf_size=0;

2175 
if(s>in_gb.buffer){

2176 
align_get_bits(&s>gb); 
2177 
i= get_bits_left(&s>gb)>>3;

2178 
if(i >= 0 && i <= BACKSTEP_SIZE){ 
2179 
memmove(s>last_buf, s>gb.buffer + (get_bits_count(&s>gb)>>3), i);

2180 
s>last_buf_size=i; 
2181 
}else

2182 
av_log(s>avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);

2183 
s>gb= s>in_gb; 
2184 
s>in_gb.buffer= NULL;

2185 
} 
2186  
2187 
align_get_bits(&s>gb); 
2188 
assert((get_bits_count(&s>gb) & 7) == 0); 
2189 
i= get_bits_left(&s>gb)>>3;

2190  
2191 
if(i<0  i > BACKSTEP_SIZE  nb_frames<0){ 
2192 
if(i<0) 
2193 
av_log(s>avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);

2194 
i= FFMIN(BACKSTEP_SIZE, buf_size  HEADER_SIZE); 
2195 
} 
2196 
assert(i <= buf_size  HEADER_SIZE && i>= 0);

2197 
memcpy(s>last_buf + s>last_buf_size, s>gb.buffer + buf_size  HEADER_SIZE  i, i); 
2198 
s>last_buf_size += i; 
2199  
2200 
break;

2201 
} 
2202  
2203 
/* apply the synthesis filter */

2204 
for(ch=0;ch<s>nb_channels;ch++) { 
2205 
samples_ptr = samples + ch; 
2206 
for(i=0;i<nb_frames;i++) { 
2207 
RENAME(ff_mpa_synth_filter)(s>synth_buf[ch], &(s>synth_buf_offset[ch]), 
2208 
RENAME(ff_mpa_synth_window), &s>dither_state, 
2209 
samples_ptr, s>nb_channels, 
2210 
s>sb_samples[ch][i]); 
2211 
samples_ptr += 32 * s>nb_channels;

2212 
} 
2213 
} 
2214  
2215 
return nb_frames * 32 * sizeof(OUT_INT) * s>nb_channels; 
2216 
} 
2217  
2218 
static int decode_frame(AVCodecContext * avctx, 
2219 
void *data, int *data_size, 
2220 
AVPacket *avpkt) 
2221 
{ 
2222 
const uint8_t *buf = avpkt>data;

2223 
int buf_size = avpkt>size;

2224 
MPADecodeContext *s = avctx>priv_data; 
2225 
uint32_t header; 
2226 
int out_size;

2227 
OUT_INT *out_samples = data; 
2228  
2229 
if(buf_size < HEADER_SIZE)

2230 
return 1; 
2231  
2232 
header = AV_RB32(buf); 
2233 
if(ff_mpa_check_header(header) < 0){ 
2234 
av_log(avctx, AV_LOG_ERROR, "Header missing\n");

2235 
return 1; 
2236 
} 
2237  
2238 
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { 
2239 
/* free format: prepare to compute frame size */

2240 
s>frame_size = 1;

2241 
return 1; 
2242 
} 
2243 
/* update codec info */

2244 
avctx>channels = s>nb_channels; 
2245 
avctx>bit_rate = s>bit_rate; 
2246 
avctx>sub_id = s>layer; 
2247  
2248 
if(*data_size < 1152*avctx>channels*sizeof(OUT_INT)) 
2249 
return 1; 
2250 
*data_size = 0;

2251  
2252 
if(s>frame_size<=0  s>frame_size > buf_size){ 
2253 
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");

2254 
return 1; 
2255 
}else if(s>frame_size < buf_size){ 
2256 
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");

2257 
buf_size= s>frame_size; 
2258 
} 
2259  
2260 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2261 
if(out_size>=0){ 
2262 
*data_size = out_size; 
2263 
avctx>sample_rate = s>sample_rate; 
2264 
//FIXME maybe move the other codec info stuff from above here too

2265 
}else

2266 
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return 1 / but also return the number of bytes consumed 
2267 
s>frame_size = 0;

2268 
return buf_size;

2269 
} 
2270  
2271 
static void flush(AVCodecContext *avctx){ 
2272 
MPADecodeContext *s = avctx>priv_data; 
2273 
memset(s>synth_buf, 0, sizeof(s>synth_buf)); 
2274 
s>last_buf_size= 0;

2275 
} 
2276  
2277 
#if CONFIG_MP3ADU_DECODER

2278 
static int decode_frame_adu(AVCodecContext * avctx, 
2279 
void *data, int *data_size, 
2280 
AVPacket *avpkt) 
2281 
{ 
2282 
const uint8_t *buf = avpkt>data;

2283 
int buf_size = avpkt>size;

2284 
MPADecodeContext *s = avctx>priv_data; 
2285 
uint32_t header; 
2286 
int len, out_size;

2287 
OUT_INT *out_samples = data; 
2288  
2289 
len = buf_size; 
2290  
2291 
// Discard too short frames

2292 
if (buf_size < HEADER_SIZE) {

2293 
*data_size = 0;

2294 
return buf_size;

2295 
} 
2296  
2297  
2298 
if (len > MPA_MAX_CODED_FRAME_SIZE)

2299 
len = MPA_MAX_CODED_FRAME_SIZE; 
2300  
2301 
// Get header and restore sync word

2302 
header = AV_RB32(buf)  0xffe00000;

2303  
2304 
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame 
2305 
*data_size = 0;

2306 
return buf_size;

2307 
} 
2308  
2309 
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); 
2310 
/* update codec info */

2311 
avctx>sample_rate = s>sample_rate; 
2312 
avctx>channels = s>nb_channels; 
2313 
avctx>bit_rate = s>bit_rate; 
2314 
avctx>sub_id = s>layer; 
2315  
2316 
s>frame_size = len; 
2317  
2318 
if (avctx>parse_only) {

2319 
out_size = buf_size; 
2320 
} else {

2321 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2322 
} 
2323  
2324 
*data_size = out_size; 
2325 
return buf_size;

2326 
} 
2327 
#endif /* CONFIG_MP3ADU_DECODER */ 
2328  
2329 
#if CONFIG_MP3ON4_DECODER

2330  
2331 
/**

2332 
* Context for MP3On4 decoder

2333 
*/

2334 
typedef struct MP3On4DecodeContext { 
2335 
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) 
2336 
int syncword; ///< syncword patch 
2337 
const uint8_t *coff; ///< channels offsets in output buffer 
2338 
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance 
2339 
} MP3On4DecodeContext; 
2340  
2341 
#include "mpeg4audio.h" 
2342  
2343 
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */

2344 
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ 
2345 
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */

2346 
static const uint8_t chan_offset[8][5] = { 
2347 
{0},

2348 
{0}, // C 
2349 
{0}, // FLR 
2350 
{2,0}, // C FLR 
2351 
{2,0,3}, // C FLR BS 
2352 
{4,0,2}, // C FLR BLRS 
2353 
{4,0,2,5}, // C FLR BLRS LFE 
2354 
{4,0,2,6,5}, // C FLR BLRS BLR LFE 
2355 
}; 
2356  
2357  
2358 
static int decode_init_mp3on4(AVCodecContext * avctx) 
2359 
{ 
2360 
MP3On4DecodeContext *s = avctx>priv_data; 
2361 
MPEG4AudioConfig cfg; 
2362 
int i;

2363  
2364 
if ((avctx>extradata_size < 2)  (avctx>extradata == NULL)) { 
2365 
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");

2366 
return 1; 
2367 
} 
2368  
2369 
ff_mpeg4audio_get_config(&cfg, avctx>extradata, avctx>extradata_size); 
2370 
if (!cfg.chan_config  cfg.chan_config > 7) { 
2371 
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");

2372 
return 1; 
2373 
} 
2374 
s>frames = mp3Frames[cfg.chan_config]; 
2375 
s>coff = chan_offset[cfg.chan_config]; 
2376 
avctx>channels = ff_mpeg4audio_channels[cfg.chan_config]; 
2377  
2378 
if (cfg.sample_rate < 16000) 
2379 
s>syncword = 0xffe00000;

2380 
else

2381 
s>syncword = 0xfff00000;

2382  
2383 
/* Init the first mp3 decoder in standard way, so that all tables get builded

2384 
* We replace avctx>priv_data with the context of the first decoder so that

2385 
* decode_init() does not have to be changed.

2386 
* Other decoders will be initialized here copying data from the first context

2387 
*/

2388 
// Allocate zeroed memory for the first decoder context

2389 
s>mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); 
2390 
// Put decoder context in place to make init_decode() happy

2391 
avctx>priv_data = s>mp3decctx[0];

2392 
decode_init(avctx); 
2393 
// Restore mp3on4 context pointer

2394 
avctx>priv_data = s; 
2395 
s>mp3decctx[0]>adu_mode = 1; // Set adu mode 
2396  
2397 
/* Create a separate codec/context for each frame (first is already ok).

2398 
* Each frame is 1 or 2 channels  up to 5 frames allowed

2399 
*/

2400 
for (i = 1; i < s>frames; i++) { 
2401 
s>mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));

2402 
s>mp3decctx[i]>adu_mode = 1;

2403 
s>mp3decctx[i]>avctx = avctx; 
2404 
} 
2405  
2406 
return 0; 
2407 
} 
2408  
2409  
2410 
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) 
2411 
{ 
2412 
MP3On4DecodeContext *s = avctx>priv_data; 
2413 
int i;

2414  
2415 
for (i = 0; i < s>frames; i++) 
2416 
if (s>mp3decctx[i])

2417 
av_free(s>mp3decctx[i]); 
2418  
2419 
return 0; 
2420 
} 
2421  
2422  
2423 
static int decode_frame_mp3on4(AVCodecContext * avctx, 
2424 
void *data, int *data_size, 
2425 
AVPacket *avpkt) 
2426 
{ 
2427 
const uint8_t *buf = avpkt>data;

2428 
int buf_size = avpkt>size;

2429 
MP3On4DecodeContext *s = avctx>priv_data; 
2430 
MPADecodeContext *m; 
2431 
int fsize, len = buf_size, out_size = 0; 
2432 
uint32_t header; 
2433 
OUT_INT *out_samples = data; 
2434 
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; 
2435 
OUT_INT *outptr, *bp; 
2436 
int fr, j, n;

2437  
2438 
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s>frames * sizeof(OUT_INT)) 
2439 
return 1; 
2440  
2441 
*data_size = 0;

2442 
// Discard too short frames

2443 
if (buf_size < HEADER_SIZE)

2444 
return 1; 
2445  
2446 
// If only one decoder interleave is not needed

2447 
outptr = s>frames == 1 ? out_samples : decoded_buf;

2448  
2449 
avctx>bit_rate = 0;

2450  
2451 
for (fr = 0; fr < s>frames; fr++) { 
2452 
fsize = AV_RB16(buf) >> 4;

2453 
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); 
2454 
m = s>mp3decctx[fr]; 
2455 
assert (m != NULL);

2456  
2457 
header = (AV_RB32(buf) & 0x000fffff)  s>syncword; // patch header 
2458  
2459 
if (ff_mpa_check_header(header) < 0) // Bad header, discard block 
2460 
break;

2461  
2462 
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); 
2463 
out_size += mp_decode_frame(m, outptr, buf, fsize); 
2464 
buf += fsize; 
2465 
len = fsize; 
2466  
2467 
if(s>frames > 1) { 
2468 
n = m>avctx>frame_size*m>nb_channels; 
2469 
/* interleave output data */

2470 
bp = out_samples + s>coff[fr]; 
2471 
if(m>nb_channels == 1) { 
2472 
for(j = 0; j < n; j++) { 
2473 
*bp = decoded_buf[j]; 
2474 
bp += avctx>channels; 
2475 
} 
2476 
} else {

2477 
for(j = 0; j < n; j++) { 
2478 
bp[0] = decoded_buf[j++];

2479 
bp[1] = decoded_buf[j];

2480 
bp += avctx>channels; 
2481 
} 
2482 
} 
2483 
} 
2484 
avctx>bit_rate += m>bit_rate; 
2485 
} 
2486  
2487 
/* update codec info */

2488 
avctx>sample_rate = s>mp3decctx[0]>sample_rate;

2489  
2490 
*data_size = out_size; 
2491 
return buf_size;

2492 
} 
2493 
#endif /* CONFIG_MP3ON4_DECODER */ 
2494  
2495 
#if !CONFIG_FLOAT

2496 
#if CONFIG_MP1_DECODER

2497 
AVCodec mp1_decoder = 
2498 
{ 
2499 
"mp1",

2500 
AVMEDIA_TYPE_AUDIO, 
2501 
CODEC_ID_MP1, 
2502 
sizeof(MPADecodeContext),

2503 
decode_init, 
2504 
NULL,

2505 
NULL,

2506 
decode_frame, 
2507 
CODEC_CAP_PARSE_ONLY, 
2508 
.flush= flush, 
2509 
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),

2510 
}; 
2511 
#endif

2512 
#if CONFIG_MP2_DECODER

2513 
AVCodec mp2_decoder = 
2514 
{ 
2515 
"mp2",

2516 
AVMEDIA_TYPE_AUDIO, 
2517 
CODEC_ID_MP2, 
2518 
sizeof(MPADecodeContext),

2519 
decode_init, 
2520 
NULL,

2521 
NULL,

2522 
decode_frame, 
2523 
CODEC_CAP_PARSE_ONLY, 
2524 
.flush= flush, 
2525 
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),

2526 
}; 
2527 
#endif

2528 
#if CONFIG_MP3_DECODER

2529 
AVCodec mp3_decoder = 
2530 
{ 
2531 
"mp3",

2532 
AVMEDIA_TYPE_AUDIO, 
2533 
CODEC_ID_MP3, 
2534 
sizeof(MPADecodeContext),

2535 
decode_init, 
2536 
NULL,

2537 
NULL,

2538 
decode_frame, 
2539 
CODEC_CAP_PARSE_ONLY, 
2540 
.flush= flush, 
2541 
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),

2542 
}; 
2543 
#endif

2544 
#if CONFIG_MP3ADU_DECODER

2545 
AVCodec mp3adu_decoder = 
2546 
{ 
2547 
"mp3adu",

2548 
AVMEDIA_TYPE_AUDIO, 
2549 
CODEC_ID_MP3ADU, 
2550 
sizeof(MPADecodeContext),

2551 
decode_init, 
2552 
NULL,

2553 
NULL,

2554 
decode_frame_adu, 
2555 
CODEC_CAP_PARSE_ONLY, 
2556 
.flush= flush, 
2557 
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),

2558 
}; 
2559 
#endif

2560 
#if CONFIG_MP3ON4_DECODER

2561 
AVCodec mp3on4_decoder = 
2562 
{ 
2563 
"mp3on4",

2564 
AVMEDIA_TYPE_AUDIO, 
2565 
CODEC_ID_MP3ON4, 
2566 
sizeof(MP3On4DecodeContext),

2567 
decode_init_mp3on4, 
2568 
NULL,

2569 
decode_close_mp3on4, 
2570 
decode_frame_mp3on4, 
2571 
.flush= flush, 
2572 
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),

2573 
}; 
2574 
#endif

2575 
#endif
