Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ fe4ff07a

History | View | Annotate | Download (51.3 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
34
 *
35
 * Features and limitations:
36
 *
37
 * Reference documents:
38
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
39
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
40
 * http://openquicktime.sourceforge.net/plugins.htm
41
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
42
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
43
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
44
 *
45
 * CD-ROM XA:
46
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
47
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
48
 * readstr http://www.geocities.co.jp/Playtown/2004/
49
 */
50

    
51
#define BLKSIZE 1024
52

    
53
#define CLAMP_TO_SHORT(value) \
54
if (value > 32767) \
55
    value = 32767; \
56
else if (value < -32768) \
57
    value = -32768; \
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
static const int AdaptCoeff1[] = {
90
        256, 512, 0, 192, 240, 460, 392
91
};
92

    
93
static const int AdaptCoeff2[] = {
94
        0, -256, 0, 64, 0, -208, -232
95
};
96

    
97
/* These are for CD-ROM XA ADPCM */
98
static const int xa_adpcm_table[5][2] = {
99
   {   0,   0 },
100
   {  60,   0 },
101
   { 115, -52 },
102
   {  98, -55 },
103
   { 122, -60 }
104
};
105

    
106
static const int ea_adpcm_table[] = {
107
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
108
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
109
};
110

    
111
static const int ct_adpcm_table[8] = {
112
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
113
    0x0133, 0x0199, 0x0200, 0x0266
114
};
115

    
116
// padded to zero where table size is less then 16
117
static const int swf_index_tables[4][16] = {
118
    /*2*/ { -1, 2 },
119
    /*3*/ { -1, -1, 2, 4 },
120
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
121
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
122
};
123

    
124
static const int yamaha_indexscale[] = {
125
    230, 230, 230, 230, 307, 409, 512, 614,
126
    230, 230, 230, 230, 307, 409, 512, 614
127
};
128

    
129
static const int yamaha_difflookup[] = {
130
    1, 3, 5, 7, 9, 11, 13, 15,
131
    -1, -3, -5, -7, -9, -11, -13, -15
132
};
133

    
134
/* end of tables */
135

    
136
typedef struct ADPCMChannelStatus {
137
    int predictor;
138
    short int step_index;
139
    int step;
140
    /* for encoding */
141
    int prev_sample;
142

    
143
    /* MS version */
144
    short sample1;
145
    short sample2;
146
    int coeff1;
147
    int coeff2;
148
    int idelta;
149
} ADPCMChannelStatus;
150

    
151
typedef struct ADPCMContext {
152
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
153
    ADPCMChannelStatus status[2];
154
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
155
} ADPCMContext;
156

    
157
/* XXX: implement encoding */
158

    
159
#ifdef CONFIG_ENCODERS
160
static int adpcm_encode_init(AVCodecContext *avctx)
161
{
162
    if (avctx->channels > 2)
163
        return -1; /* only stereo or mono =) */
164
    switch(avctx->codec->id) {
165
    case CODEC_ID_ADPCM_IMA_QT:
166
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
168
        return -1;
169
        break;
170
    case CODEC_ID_ADPCM_IMA_WAV:
171
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
172
                                                             /* and we have 4 bytes per channel overhead */
173
        avctx->block_align = BLKSIZE;
174
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
175
        break;
176
    case CODEC_ID_ADPCM_MS:
177
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178
                                                             /* and we have 7 bytes per channel overhead */
179
        avctx->block_align = BLKSIZE;
180
        break;
181
    case CODEC_ID_ADPCM_YAMAHA:
182
        avctx->frame_size = BLKSIZE * avctx->channels;
183
        avctx->block_align = BLKSIZE;
184
        break;
185
    case CODEC_ID_ADPCM_SWF:
186
        if (avctx->sample_rate != 11025 &&
187
            avctx->sample_rate != 22050 &&
188
            avctx->sample_rate != 44100) {
189
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
190
            return -1;
191
        }
192
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
193
        break;
194
    default:
195
        return -1;
196
        break;
197
    }
198

    
199
    avctx->coded_frame= avcodec_alloc_frame();
200
    avctx->coded_frame->key_frame= 1;
201

    
202
    return 0;
203
}
204

    
205
static int adpcm_encode_close(AVCodecContext *avctx)
206
{
207
    av_freep(&avctx->coded_frame);
208

    
209
    return 0;
210
}
211

    
212

    
213
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
214
{
215
    int delta = sample - c->prev_sample;
216
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
217
    c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
218
    CLAMP_TO_SHORT(c->prev_sample);
219
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
220
    return nibble;
221
}
222

    
223
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
224
{
225
    int predictor, nibble, bias;
226

    
227
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
228

    
229
    nibble= sample - predictor;
230
    if(nibble>=0) bias= c->idelta/2;
231
    else          bias=-c->idelta/2;
232

    
233
    nibble= (nibble + bias) / c->idelta;
234
    nibble= av_clip(nibble, -8, 7)&0x0F;
235

    
236
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
237
    CLAMP_TO_SHORT(predictor);
238

    
239
    c->sample2 = c->sample1;
240
    c->sample1 = predictor;
241

    
242
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
243
    if (c->idelta < 16) c->idelta = 16;
244

    
245
    return nibble;
246
}
247

    
248
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
249
{
250
    int nibble, delta;
251

    
252
    if(!c->step) {
253
        c->predictor = 0;
254
        c->step = 127;
255
    }
256

    
257
    delta = sample - c->predictor;
258

    
259
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
260

    
261
    c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
262
    CLAMP_TO_SHORT(c->predictor);
263
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
264
    c->step = av_clip(c->step, 127, 24567);
265

    
266
    return nibble;
267
}
268

    
269
typedef struct TrellisPath {
270
    int nibble;
271
    int prev;
272
} TrellisPath;
273

    
274
typedef struct TrellisNode {
275
    uint32_t ssd;
276
    int path;
277
    int sample1;
278
    int sample2;
279
    int step;
280
} TrellisNode;
281

    
282
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
283
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
284
{
285
#define FREEZE_INTERVAL 128
286
    //FIXME 6% faster if frontier is a compile-time constant
287
    const int frontier = 1 << avctx->trellis;
288
    const int stride = avctx->channels;
289
    const int version = avctx->codec->id;
290
    const int max_paths = frontier*FREEZE_INTERVAL;
291
    TrellisPath paths[max_paths], *p;
292
    TrellisNode node_buf[2][frontier];
293
    TrellisNode *nodep_buf[2][frontier];
294
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
295
    TrellisNode **nodes_next = nodep_buf[1];
296
    int pathn = 0, froze = -1, i, j, k;
297

    
298
    assert(!(max_paths&(max_paths-1)));
299

    
300
    memset(nodep_buf, 0, sizeof(nodep_buf));
301
    nodes[0] = &node_buf[1][0];
302
    nodes[0]->ssd = 0;
303
    nodes[0]->path = 0;
304
    nodes[0]->step = c->step_index;
305
    nodes[0]->sample1 = c->sample1;
306
    nodes[0]->sample2 = c->sample2;
307
    if(version == CODEC_ID_ADPCM_IMA_WAV)
308
        nodes[0]->sample1 = c->prev_sample;
309
    if(version == CODEC_ID_ADPCM_MS)
310
        nodes[0]->step = c->idelta;
311
    if(version == CODEC_ID_ADPCM_YAMAHA) {
312
        if(c->step == 0) {
313
            nodes[0]->step = 127;
314
            nodes[0]->sample1 = 0;
315
        } else {
316
            nodes[0]->step = c->step;
317
            nodes[0]->sample1 = c->predictor;
318
        }
319
    }
320

    
321
    for(i=0; i<n; i++) {
322
        TrellisNode *t = node_buf[i&1];
323
        TrellisNode **u;
324
        int sample = samples[i*stride];
325
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
326
        for(j=0; j<frontier && nodes[j]; j++) {
327
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
328
            const int range = (j < frontier/2) ? 1 : 0;
329
            const int step = nodes[j]->step;
330
            int nidx;
331
            if(version == CODEC_ID_ADPCM_MS) {
332
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
333
                const int div = (sample - predictor) / step;
334
                const int nmin = av_clip(div-range, -8, 6);
335
                const int nmax = av_clip(div+range, -7, 7);
336
                for(nidx=nmin; nidx<=nmax; nidx++) {
337
                    const int nibble = nidx & 0xf;
338
                    int dec_sample = predictor + nidx * step;
339
#define STORE_NODE(NAME, STEP_INDEX)\
340
                    int d;\
341
                    uint32_t ssd;\
342
                    CLAMP_TO_SHORT(dec_sample);\
343
                    d = sample - dec_sample;\
344
                    ssd = nodes[j]->ssd + d*d;\
345
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
346
                        continue;\
347
                    /* Collapse any two states with the same previous sample value. \
348
                     * One could also distinguish states by step and by 2nd to last
349
                     * sample, but the effects of that are negligible. */\
350
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
351
                        if(dec_sample == nodes_next[k]->sample1) {\
352
                            assert(ssd >= nodes_next[k]->ssd);\
353
                            goto next_##NAME;\
354
                        }\
355
                    }\
356
                    for(k=0; k<frontier; k++) {\
357
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
358
                            TrellisNode *u = nodes_next[frontier-1];\
359
                            if(!u) {\
360
                                assert(pathn < max_paths);\
361
                                u = t++;\
362
                                u->path = pathn++;\
363
                            }\
364
                            u->ssd = ssd;\
365
                            u->step = STEP_INDEX;\
366
                            u->sample2 = nodes[j]->sample1;\
367
                            u->sample1 = dec_sample;\
368
                            paths[u->path].nibble = nibble;\
369
                            paths[u->path].prev = nodes[j]->path;\
370
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
371
                            nodes_next[k] = u;\
372
                            break;\
373
                        }\
374
                    }\
375
                    next_##NAME:;
376
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
377
                }
378
            } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
379
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
380
                const int predictor = nodes[j]->sample1;\
381
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
382
                int nmin = av_clip(div-range, -7, 6);\
383
                int nmax = av_clip(div+range, -6, 7);\
384
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
385
                if(nmax<0) nmax--;\
386
                for(nidx=nmin; nidx<=nmax; nidx++) {\
387
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
388
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
389
                    STORE_NODE(NAME, STEP_INDEX);\
390
                }
391
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
392
            } else { //CODEC_ID_ADPCM_YAMAHA
393
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
394
#undef LOOP_NODES
395
#undef STORE_NODE
396
            }
397
        }
398

    
399
        u = nodes;
400
        nodes = nodes_next;
401
        nodes_next = u;
402

    
403
        // prevent overflow
404
        if(nodes[0]->ssd > (1<<28)) {
405
            for(j=1; j<frontier && nodes[j]; j++)
406
                nodes[j]->ssd -= nodes[0]->ssd;
407
            nodes[0]->ssd = 0;
408
        }
409

    
410
        // merge old paths to save memory
411
        if(i == froze + FREEZE_INTERVAL) {
412
            p = &paths[nodes[0]->path];
413
            for(k=i; k>froze; k--) {
414
                dst[k] = p->nibble;
415
                p = &paths[p->prev];
416
            }
417
            froze = i;
418
            pathn = 0;
419
            // other nodes might use paths that don't coincide with the frozen one.
420
            // checking which nodes do so is too slow, so just kill them all.
421
            // this also slightly improves quality, but I don't know why.
422
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
423
        }
424
    }
425

    
426
    p = &paths[nodes[0]->path];
427
    for(i=n-1; i>froze; i--) {
428
        dst[i] = p->nibble;
429
        p = &paths[p->prev];
430
    }
431

    
432
    c->predictor = nodes[0]->sample1;
433
    c->sample1 = nodes[0]->sample1;
434
    c->sample2 = nodes[0]->sample2;
435
    c->step_index = nodes[0]->step;
436
    c->step = nodes[0]->step;
437
    c->idelta = nodes[0]->step;
438
}
439

    
440
static int adpcm_encode_frame(AVCodecContext *avctx,
441
                            unsigned char *frame, int buf_size, void *data)
442
{
443
    int n, i, st;
444
    short *samples;
445
    unsigned char *dst;
446
    ADPCMContext *c = avctx->priv_data;
447

    
448
    dst = frame;
449
    samples = (short *)data;
450
    st= avctx->channels == 2;
451
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
452

    
453
    switch(avctx->codec->id) {
454
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
455
        break;
456
    case CODEC_ID_ADPCM_IMA_WAV:
457
        n = avctx->frame_size / 8;
458
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
459
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
460
            bytestream_put_le16(&dst, c->status[0].prev_sample);
461
            *dst++ = (unsigned char)c->status[0].step_index;
462
            *dst++ = 0; /* unknown */
463
            samples++;
464
            if (avctx->channels == 2) {
465
                c->status[1].prev_sample = (signed short)samples[1];
466
/*                c->status[1].step_index = 0; */
467
                bytestream_put_le16(&dst, c->status[1].prev_sample);
468
                *dst++ = (unsigned char)c->status[1].step_index;
469
                *dst++ = 0;
470
                samples++;
471
            }
472

    
473
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
474
            if(avctx->trellis > 0) {
475
                uint8_t buf[2][n*8];
476
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
477
                if(avctx->channels == 2)
478
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
479
                for(i=0; i<n; i++) {
480
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
481
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
482
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
483
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
484
                    if (avctx->channels == 2) {
485
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
486
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
487
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
488
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
489
                    }
490
                }
491
            } else
492
            for (; n>0; n--) {
493
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
494
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
495
                dst++;
496
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
497
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
498
                dst++;
499
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
500
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
501
                dst++;
502
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
503
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
504
                dst++;
505
                /* right channel */
506
                if (avctx->channels == 2) {
507
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
508
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
509
                    dst++;
510
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
511
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
512
                    dst++;
513
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
514
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
515
                    dst++;
516
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
517
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
518
                    dst++;
519
                }
520
                samples += 8 * avctx->channels;
521
            }
522
        break;
523
    case CODEC_ID_ADPCM_SWF:
524
    {
525
        int i;
526
        PutBitContext pb;
527
        init_put_bits(&pb, dst, buf_size*8);
528

    
529
        //Store AdpcmCodeSize
530
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
531

    
532
        //Init the encoder state
533
        for(i=0; i<avctx->channels; i++){
534
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
535
            put_bits(&pb, 16, samples[i] & 0xFFFF);
536
            put_bits(&pb, 6, c->status[i].step_index);
537
            c->status[i].prev_sample = (signed short)samples[i];
538
        }
539

    
540
        for (i=0; i<avctx->frame_size; i++) {
541
            put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]) & 0xF);
542
            if (avctx->channels == 2)
543
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]) & 0xF);
544
        }
545
        flush_put_bits(&pb);
546
        dst += put_bits_count(&pb)>>3;
547
        break;
548
    }
549
    case CODEC_ID_ADPCM_MS:
550
        for(i=0; i<avctx->channels; i++){
551
            int predictor=0;
552

    
553
            *dst++ = predictor;
554
            c->status[i].coeff1 = AdaptCoeff1[predictor];
555
            c->status[i].coeff2 = AdaptCoeff2[predictor];
556
        }
557
        for(i=0; i<avctx->channels; i++){
558
            if (c->status[i].idelta < 16)
559
                c->status[i].idelta = 16;
560

    
561
            bytestream_put_le16(&dst, c->status[i].idelta);
562
        }
563
        for(i=0; i<avctx->channels; i++){
564
            c->status[i].sample1= *samples++;
565

    
566
            bytestream_put_le16(&dst, c->status[i].sample1);
567
        }
568
        for(i=0; i<avctx->channels; i++){
569
            c->status[i].sample2= *samples++;
570

    
571
            bytestream_put_le16(&dst, c->status[i].sample2);
572
        }
573

    
574
        if(avctx->trellis > 0) {
575
            int n = avctx->block_align - 7*avctx->channels;
576
            uint8_t buf[2][n];
577
            if(avctx->channels == 1) {
578
                n *= 2;
579
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
580
                for(i=0; i<n; i+=2)
581
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
582
            } else {
583
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
584
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
585
                for(i=0; i<n; i++)
586
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
587
            }
588
        } else
589
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
590
            int nibble;
591
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
592
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
593
            *dst++ = nibble;
594
        }
595
        break;
596
    case CODEC_ID_ADPCM_YAMAHA:
597
        n = avctx->frame_size / 2;
598
        if(avctx->trellis > 0) {
599
            uint8_t buf[2][n*2];
600
            n *= 2;
601
            if(avctx->channels == 1) {
602
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
603
                for(i=0; i<n; i+=2)
604
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
605
            } else {
606
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
607
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
608
                for(i=0; i<n; i++)
609
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
610
            }
611
        } else
612
        for (; n>0; n--) {
613
            for(i = 0; i < avctx->channels; i++) {
614
                int nibble;
615
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
616
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
617
                *dst++ = nibble;
618
            }
619
            samples += 2 * avctx->channels;
620
        }
621
        break;
622
    default:
623
        return -1;
624
    }
625
    return dst - frame;
626
}
627
#endif //CONFIG_ENCODERS
628

    
629
static int adpcm_decode_init(AVCodecContext * avctx)
630
{
631
    ADPCMContext *c = avctx->priv_data;
632

    
633
    if(avctx->channels > 2U){
634
        return -1;
635
    }
636

    
637
    c->channel = 0;
638
    c->status[0].predictor = c->status[1].predictor = 0;
639
    c->status[0].step_index = c->status[1].step_index = 0;
640
    c->status[0].step = c->status[1].step = 0;
641

    
642
    switch(avctx->codec->id) {
643
    case CODEC_ID_ADPCM_CT:
644
        c->status[0].step = c->status[1].step = 511;
645
        break;
646
    case CODEC_ID_ADPCM_IMA_WS:
647
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
648
            c->status[0].predictor = AV_RL32(avctx->extradata);
649
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
650
        }
651
        break;
652
    default:
653
        break;
654
    }
655
    return 0;
656
}
657

    
658
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
659
{
660
    int step_index;
661
    int predictor;
662
    int sign, delta, diff, step;
663

    
664
    step = step_table[c->step_index];
665
    step_index = c->step_index + index_table[(unsigned)nibble];
666
    if (step_index < 0) step_index = 0;
667
    else if (step_index > 88) step_index = 88;
668

    
669
    sign = nibble & 8;
670
    delta = nibble & 7;
671
    /* perform direct multiplication instead of series of jumps proposed by
672
     * the reference ADPCM implementation since modern CPUs can do the mults
673
     * quickly enough */
674
    diff = ((2 * delta + 1) * step) >> shift;
675
    predictor = c->predictor;
676
    if (sign) predictor -= diff;
677
    else predictor += diff;
678

    
679
    CLAMP_TO_SHORT(predictor);
680
    c->predictor = predictor;
681
    c->step_index = step_index;
682

    
683
    return (short)predictor;
684
}
685

    
686
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
687
{
688
    int predictor;
689

    
690
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
691
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
692
    CLAMP_TO_SHORT(predictor);
693

    
694
    c->sample2 = c->sample1;
695
    c->sample1 = predictor;
696
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
697
    if (c->idelta < 16) c->idelta = 16;
698

    
699
    return (short)predictor;
700
}
701

    
702
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
703
{
704
    int predictor;
705
    int sign, delta, diff;
706
    int new_step;
707

    
708
    sign = nibble & 8;
709
    delta = nibble & 7;
710
    /* perform direct multiplication instead of series of jumps proposed by
711
     * the reference ADPCM implementation since modern CPUs can do the mults
712
     * quickly enough */
713
    diff = ((2 * delta + 1) * c->step) >> 3;
714
    predictor = c->predictor;
715
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
716
    if(sign)
717
        predictor = ((predictor * 254) >> 8) - diff;
718
    else
719
            predictor = ((predictor * 254) >> 8) + diff;
720
    /* calculate new step and clamp it to range 511..32767 */
721
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
722
    c->step = new_step;
723
    if(c->step < 511)
724
        c->step = 511;
725
    if(c->step > 32767)
726
        c->step = 32767;
727

    
728
    CLAMP_TO_SHORT(predictor);
729
    c->predictor = predictor;
730
    return (short)predictor;
731
}
732

    
733
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
734
{
735
    int sign, delta, diff;
736

    
737
    sign = nibble & (1<<(size-1));
738
    delta = nibble & ((1<<(size-1))-1);
739
    diff = delta << (7 + c->step + shift);
740

    
741
    if (sign)
742
        c->predictor -= diff;
743
    else
744
        c->predictor += diff;
745

    
746
    /* clamp result */
747
    if (c->predictor > 16256)
748
        c->predictor = 16256;
749
    else if (c->predictor < -16384)
750
        c->predictor = -16384;
751

    
752
    /* calculate new step */
753
    if (delta >= (2*size - 3) && c->step < 3)
754
        c->step++;
755
    else if (delta == 0 && c->step > 0)
756
        c->step--;
757

    
758
    return (short) c->predictor;
759
}
760

    
761
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
762
{
763
    if(!c->step) {
764
        c->predictor = 0;
765
        c->step = 127;
766
    }
767

    
768
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
769
    CLAMP_TO_SHORT(c->predictor);
770
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
771
    c->step = av_clip(c->step, 127, 24567);
772
    return c->predictor;
773
}
774

    
775
static void xa_decode(short *out, const unsigned char *in,
776
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
777
{
778
    int i, j;
779
    int shift,filter,f0,f1;
780
    int s_1,s_2;
781
    int d,s,t;
782

    
783
    for(i=0;i<4;i++) {
784

    
785
        shift  = 12 - (in[4+i*2] & 15);
786
        filter = in[4+i*2] >> 4;
787
        f0 = xa_adpcm_table[filter][0];
788
        f1 = xa_adpcm_table[filter][1];
789

    
790
        s_1 = left->sample1;
791
        s_2 = left->sample2;
792

    
793
        for(j=0;j<28;j++) {
794
            d = in[16+i+j*4];
795

    
796
            t = (signed char)(d<<4)>>4;
797
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
798
            CLAMP_TO_SHORT(s);
799
            *out = s;
800
            out += inc;
801
            s_2 = s_1;
802
            s_1 = s;
803
        }
804

    
805
        if (inc==2) { /* stereo */
806
            left->sample1 = s_1;
807
            left->sample2 = s_2;
808
            s_1 = right->sample1;
809
            s_2 = right->sample2;
810
            out = out + 1 - 28*2;
811
        }
812

    
813
        shift  = 12 - (in[5+i*2] & 15);
814
        filter = in[5+i*2] >> 4;
815

    
816
        f0 = xa_adpcm_table[filter][0];
817
        f1 = xa_adpcm_table[filter][1];
818

    
819
        for(j=0;j<28;j++) {
820
            d = in[16+i+j*4];
821

    
822
            t = (signed char)d >> 4;
823
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
824
            CLAMP_TO_SHORT(s);
825
            *out = s;
826
            out += inc;
827
            s_2 = s_1;
828
            s_1 = s;
829
        }
830

    
831
        if (inc==2) { /* stereo */
832
            right->sample1 = s_1;
833
            right->sample2 = s_2;
834
            out -= 1;
835
        } else {
836
            left->sample1 = s_1;
837
            left->sample2 = s_2;
838
        }
839
    }
840
}
841

    
842

    
843
/* DK3 ADPCM support macro */
844
#define DK3_GET_NEXT_NIBBLE() \
845
    if (decode_top_nibble_next) \
846
    { \
847
        nibble = (last_byte >> 4) & 0x0F; \
848
        decode_top_nibble_next = 0; \
849
    } \
850
    else \
851
    { \
852
        last_byte = *src++; \
853
        if (src >= buf + buf_size) break; \
854
        nibble = last_byte & 0x0F; \
855
        decode_top_nibble_next = 1; \
856
    }
857

    
858
static int adpcm_decode_frame(AVCodecContext *avctx,
859
                            void *data, int *data_size,
860
                            uint8_t *buf, int buf_size)
861
{
862
    ADPCMContext *c = avctx->priv_data;
863
    ADPCMChannelStatus *cs;
864
    int n, m, channel, i;
865
    int block_predictor[2];
866
    short *samples;
867
    short *samples_end;
868
    uint8_t *src;
869
    int st; /* stereo */
870

    
871
    /* DK3 ADPCM accounting variables */
872
    unsigned char last_byte = 0;
873
    unsigned char nibble;
874
    int decode_top_nibble_next = 0;
875
    int diff_channel;
876

    
877
    /* EA ADPCM state variables */
878
    uint32_t samples_in_chunk;
879
    int32_t previous_left_sample, previous_right_sample;
880
    int32_t current_left_sample, current_right_sample;
881
    int32_t next_left_sample, next_right_sample;
882
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
883
    uint8_t shift_left, shift_right;
884
    int count1, count2;
885

    
886
    if (!buf_size)
887
        return 0;
888

    
889
    //should protect all 4bit ADPCM variants
890
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
891
    //
892
    if(*data_size/4 < buf_size + 8)
893
        return -1;
894

    
895
    samples = data;
896
    samples_end= samples + *data_size/2;
897
    *data_size= 0;
898
    src = buf;
899

    
900
    st = avctx->channels == 2 ? 1 : 0;
901

    
902
    switch(avctx->codec->id) {
903
    case CODEC_ID_ADPCM_IMA_QT:
904
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
905
        channel = c->channel;
906
        cs = &(c->status[channel]);
907
        /* (pppppp) (piiiiiii) */
908

    
909
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
910
        cs->predictor = (*src++) << 8;
911
        cs->predictor |= (*src & 0x80);
912
        cs->predictor &= 0xFF80;
913

    
914
        /* sign extension */
915
        if(cs->predictor & 0x8000)
916
            cs->predictor -= 0x10000;
917

    
918
        CLAMP_TO_SHORT(cs->predictor);
919

    
920
        cs->step_index = (*src++) & 0x7F;
921

    
922
        if (cs->step_index > 88){
923
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
924
            cs->step_index = 88;
925
        }
926

    
927
        cs->step = step_table[cs->step_index];
928

    
929
        if (st && channel)
930
            samples++;
931

    
932
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
933
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
934
            samples += avctx->channels;
935
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
936
            samples += avctx->channels;
937
            src ++;
938
        }
939

    
940
        if(st) { /* handle stereo interlacing */
941
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
942
            if(channel == 1) { /* wait for the other packet before outputing anything */
943
                return src - buf;
944
            }
945
        }
946
        break;
947
    case CODEC_ID_ADPCM_IMA_WAV:
948
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
949
            buf_size = avctx->block_align;
950

    
951
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
952

    
953
        for(i=0; i<avctx->channels; i++){
954
            cs = &(c->status[i]);
955
            cs->predictor = (int16_t)(src[0] + (src[1]<<8));
956
            src+=2;
957

    
958
        // XXX: is this correct ??: *samples++ = cs->predictor;
959

    
960
            cs->step_index = *src++;
961
            if (cs->step_index > 88){
962
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
963
                cs->step_index = 88;
964
            }
965
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
966
        }
967

    
968
        while(src < buf + buf_size){
969
            for(m=0; m<4; m++){
970
                for(i=0; i<=st; i++)
971
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
972
                for(i=0; i<=st; i++)
973
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
974
                src++;
975
            }
976
            src += 4*st;
977
        }
978
        break;
979
    case CODEC_ID_ADPCM_4XM:
980
        cs = &(c->status[0]);
981
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
982
        if(st){
983
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
984
        }
985
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
986
        if(st){
987
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
988
        }
989
        if (cs->step_index < 0) cs->step_index = 0;
990
        if (cs->step_index > 88) cs->step_index = 88;
991

    
992
        m= (buf_size - (src - buf))>>st;
993
        for(i=0; i<m; i++) {
994
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
995
            if (st)
996
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
997
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
998
            if (st)
999
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1000
        }
1001

    
1002
        src += m<<st;
1003

    
1004
        break;
1005
    case CODEC_ID_ADPCM_MS:
1006
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1007
            buf_size = avctx->block_align;
1008
        n = buf_size - 7 * avctx->channels;
1009
        if (n < 0)
1010
            return -1;
1011
        block_predictor[0] = av_clip(*src++, 0, 7);
1012
        block_predictor[1] = 0;
1013
        if (st)
1014
            block_predictor[1] = av_clip(*src++, 0, 7);
1015
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1016
        src+=2;
1017
        if (st){
1018
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1019
            src+=2;
1020
        }
1021
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1022
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1023
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1024
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1025

    
1026
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1027
        src+=2;
1028
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1029
        if (st) src+=2;
1030
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1031
        src+=2;
1032
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1033
        if (st) src+=2;
1034

    
1035
        *samples++ = c->status[0].sample1;
1036
        if (st) *samples++ = c->status[1].sample1;
1037
        *samples++ = c->status[0].sample2;
1038
        if (st) *samples++ = c->status[1].sample2;
1039
        for(;n>0;n--) {
1040
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1041
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1042
            src ++;
1043
        }
1044
        break;
1045
    case CODEC_ID_ADPCM_IMA_DK4:
1046
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1047
            buf_size = avctx->block_align;
1048

    
1049
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1050
        c->status[0].step_index = src[2];
1051
        src += 4;
1052
        *samples++ = c->status[0].predictor;
1053
        if (st) {
1054
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1055
            c->status[1].step_index = src[2];
1056
            src += 4;
1057
            *samples++ = c->status[1].predictor;
1058
        }
1059
        while (src < buf + buf_size) {
1060

    
1061
            /* take care of the top nibble (always left or mono channel) */
1062
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1063
                (src[0] >> 4) & 0x0F, 3);
1064

    
1065
            /* take care of the bottom nibble, which is right sample for
1066
             * stereo, or another mono sample */
1067
            if (st)
1068
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1069
                    src[0] & 0x0F, 3);
1070
            else
1071
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1072
                    src[0] & 0x0F, 3);
1073

    
1074
            src++;
1075
        }
1076
        break;
1077
    case CODEC_ID_ADPCM_IMA_DK3:
1078
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1079
            buf_size = avctx->block_align;
1080

    
1081
        if(buf_size + 16 > (samples_end - samples)*3/8)
1082
            return -1;
1083

    
1084
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1085
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1086
        c->status[0].step_index = src[14];
1087
        c->status[1].step_index = src[15];
1088
        /* sign extend the predictors */
1089
        src += 16;
1090
        diff_channel = c->status[1].predictor;
1091

    
1092
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1093
         * the buffer is consumed */
1094
        while (1) {
1095

    
1096
            /* for this algorithm, c->status[0] is the sum channel and
1097
             * c->status[1] is the diff channel */
1098

    
1099
            /* process the first predictor of the sum channel */
1100
            DK3_GET_NEXT_NIBBLE();
1101
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1102

    
1103
            /* process the diff channel predictor */
1104
            DK3_GET_NEXT_NIBBLE();
1105
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1106

    
1107
            /* process the first pair of stereo PCM samples */
1108
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1109
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1110
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1111

    
1112
            /* process the second predictor of the sum channel */
1113
            DK3_GET_NEXT_NIBBLE();
1114
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1115

    
1116
            /* process the second pair of stereo PCM samples */
1117
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1118
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1119
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1120
        }
1121
        break;
1122
    case CODEC_ID_ADPCM_IMA_WS:
1123
        /* no per-block initialization; just start decoding the data */
1124
        while (src < buf + buf_size) {
1125

    
1126
            if (st) {
1127
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1128
                    (src[0] >> 4) & 0x0F, 3);
1129
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1130
                    src[0] & 0x0F, 3);
1131
            } else {
1132
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1133
                    (src[0] >> 4) & 0x0F, 3);
1134
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1135
                    src[0] & 0x0F, 3);
1136
            }
1137

    
1138
            src++;
1139
        }
1140
        break;
1141
    case CODEC_ID_ADPCM_XA:
1142
        c->status[0].sample1 = c->status[0].sample2 =
1143
        c->status[1].sample1 = c->status[1].sample2 = 0;
1144
        while (buf_size >= 128) {
1145
            xa_decode(samples, src, &c->status[0], &c->status[1],
1146
                avctx->channels);
1147
            src += 128;
1148
            samples += 28 * 8;
1149
            buf_size -= 128;
1150
        }
1151
        break;
1152
    case CODEC_ID_ADPCM_EA:
1153
        samples_in_chunk = AV_RL32(src);
1154
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1155
            src += buf_size;
1156
            break;
1157
        }
1158
        src += 4;
1159
        current_left_sample = (int16_t)AV_RL16(src);
1160
        src += 2;
1161
        previous_left_sample = (int16_t)AV_RL16(src);
1162
        src += 2;
1163
        current_right_sample = (int16_t)AV_RL16(src);
1164
        src += 2;
1165
        previous_right_sample = (int16_t)AV_RL16(src);
1166
        src += 2;
1167

    
1168
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1169
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1170
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1171
            coeff1r = ea_adpcm_table[*src & 0x0F];
1172
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1173
            src++;
1174

    
1175
            shift_left = ((*src >> 4) & 0x0F) + 8;
1176
            shift_right = (*src & 0x0F) + 8;
1177
            src++;
1178

    
1179
            for (count2 = 0; count2 < 28; count2++) {
1180
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1181
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1182
                src++;
1183

    
1184
                next_left_sample = (next_left_sample +
1185
                    (current_left_sample * coeff1l) +
1186
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1187
                next_right_sample = (next_right_sample +
1188
                    (current_right_sample * coeff1r) +
1189
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1190
                CLAMP_TO_SHORT(next_left_sample);
1191
                CLAMP_TO_SHORT(next_right_sample);
1192

    
1193
                previous_left_sample = current_left_sample;
1194
                current_left_sample = next_left_sample;
1195
                previous_right_sample = current_right_sample;
1196
                current_right_sample = next_right_sample;
1197
                *samples++ = (unsigned short)current_left_sample;
1198
                *samples++ = (unsigned short)current_right_sample;
1199
            }
1200
        }
1201
        break;
1202
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1203
        c->status[0].predictor = *src;
1204
        src += 2;
1205
        c->status[0].step_index = *src++;
1206
        src++;  /* skip another byte before getting to the meat */
1207
        while (src < buf + buf_size) {
1208
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1209
                *src & 0x0F, 3);
1210
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1211
                (*src >> 4) & 0x0F, 3);
1212
            src++;
1213
        }
1214
        break;
1215
    case CODEC_ID_ADPCM_CT:
1216
        while (src < buf + buf_size) {
1217
            if (st) {
1218
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1219
                    (src[0] >> 4) & 0x0F);
1220
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1221
                    src[0] & 0x0F);
1222
            } else {
1223
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1224
                    (src[0] >> 4) & 0x0F);
1225
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1226
                    src[0] & 0x0F);
1227
            }
1228
            src++;
1229
        }
1230
        break;
1231
    case CODEC_ID_ADPCM_SBPRO_4:
1232
    case CODEC_ID_ADPCM_SBPRO_3:
1233
    case CODEC_ID_ADPCM_SBPRO_2:
1234
        if (!c->status[0].step_index) {
1235
            /* the first byte is a raw sample */
1236
            *samples++ = 128 * (*src++ - 0x80);
1237
            if (st)
1238
              *samples++ = 128 * (*src++ - 0x80);
1239
            c->status[0].step_index = 1;
1240
        }
1241
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1242
            while (src < buf + buf_size) {
1243
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1244
                    (src[0] >> 4) & 0x0F, 4, 0);
1245
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1246
                    src[0] & 0x0F, 4, 0);
1247
                src++;
1248
            }
1249
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1250
            while (src < buf + buf_size && samples + 2 < samples_end) {
1251
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1252
                    (src[0] >> 5) & 0x07, 3, 0);
1253
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1254
                    (src[0] >> 2) & 0x07, 3, 0);
1255
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1256
                    src[0] & 0x03, 2, 0);
1257
                src++;
1258
            }
1259
        } else {
1260
            while (src < buf + buf_size && samples + 3 < samples_end) {
1261
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1262
                    (src[0] >> 6) & 0x03, 2, 2);
1263
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1264
                    (src[0] >> 4) & 0x03, 2, 2);
1265
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1266
                    (src[0] >> 2) & 0x03, 2, 2);
1267
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1268
                    src[0] & 0x03, 2, 2);
1269
                src++;
1270
            }
1271
        }
1272
        break;
1273
    case CODEC_ID_ADPCM_SWF:
1274
    {
1275
        GetBitContext gb;
1276
        const int *table;
1277
        int k0, signmask, nb_bits, count;
1278
        int size = buf_size*8;
1279

    
1280
        init_get_bits(&gb, buf, size);
1281

    
1282
        //read bits & initial values
1283
        nb_bits = get_bits(&gb, 2)+2;
1284
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1285
        table = swf_index_tables[nb_bits-2];
1286
        k0 = 1 << (nb_bits-2);
1287
        signmask = 1 << (nb_bits-1);
1288

    
1289
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1290
        for (i = 0; i < avctx->channels; i++) {
1291
            *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1292
            c->status[i].step_index = get_bits(&gb, 6);
1293
        }
1294

    
1295
        for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++)
1296
        {
1297
            int i;
1298

    
1299
            for (i = 0; i < avctx->channels; i++) {
1300
                // similar to IMA adpcm
1301
                int delta = get_bits(&gb, nb_bits);
1302
                int step = step_table[c->status[i].step_index];
1303
                long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1304
                int k = k0;
1305

    
1306
                do {
1307
                    if (delta & k)
1308
                        vpdiff += step;
1309
                    step >>= 1;
1310
                    k >>= 1;
1311
                } while(k);
1312
                vpdiff += step;
1313

    
1314
                if (delta & signmask)
1315
                    c->status[i].predictor -= vpdiff;
1316
                else
1317
                    c->status[i].predictor += vpdiff;
1318

    
1319
                c->status[i].step_index += table[delta & (~signmask)];
1320

    
1321
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1322
                c->status[i].predictor = av_clip(c->status[i].predictor, -32768, 32767);
1323

    
1324
                *samples++ = c->status[i].predictor;
1325
                if (samples >= samples_end) {
1326
                    av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1327
                    return -1;
1328
                }
1329
            }
1330
        }
1331
        }
1332
        src += buf_size;
1333
        break;
1334
    }
1335
    case CODEC_ID_ADPCM_YAMAHA:
1336
        while (src < buf + buf_size) {
1337
            if (st) {
1338
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1339
                        src[0] & 0x0F);
1340
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1341
                        (src[0] >> 4) & 0x0F);
1342
            } else {
1343
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1344
                        src[0] & 0x0F);
1345
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1346
                        (src[0] >> 4) & 0x0F);
1347
            }
1348
            src++;
1349
        }
1350
        break;
1351
    case CODEC_ID_ADPCM_THP:
1352
    {
1353
        int table[2][16];
1354
        unsigned int samplecnt;
1355
        int prev[2][2];
1356
        int ch;
1357

    
1358
        if (buf_size < 80) {
1359
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1360
            return -1;
1361
        }
1362

    
1363
        src+=4;
1364
        samplecnt = bytestream_get_be32(&src);
1365

    
1366
        for (i = 0; i < 32; i++)
1367
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1368

    
1369
        /* Initialize the previous sample.  */
1370
        for (i = 0; i < 4; i++)
1371
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1372

    
1373
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1374
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1375
            return -1;
1376
        }
1377

    
1378
        for (ch = 0; ch <= st; ch++) {
1379
            samples = (unsigned short *) data + ch;
1380

    
1381
            /* Read in every sample for this channel.  */
1382
            for (i = 0; i < samplecnt / 14; i++) {
1383
                int index = (*src >> 4) & 7;
1384
                unsigned int exp = 28 - (*src++ & 15);
1385
                int factor1 = table[ch][index * 2];
1386
                int factor2 = table[ch][index * 2 + 1];
1387

    
1388
                /* Decode 14 samples.  */
1389
                for (n = 0; n < 14; n++) {
1390
                    int32_t sampledat;
1391
                    if(n&1) sampledat=  *src++    <<28;
1392
                    else    sampledat= (*src&0xF0)<<24;
1393

    
1394
                    sampledat = ((prev[ch][0]*factor1
1395
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1396
                    CLAMP_TO_SHORT(sampledat);
1397
                    *samples = sampledat;
1398
                    prev[ch][1] = prev[ch][0];
1399
                    prev[ch][0] = *samples++;
1400

    
1401
                    /* In case of stereo, skip one sample, this sample
1402
                       is for the other channel.  */
1403
                    samples += st;
1404
                }
1405
            }
1406
        }
1407

    
1408
        /* In the previous loop, in case stereo is used, samples is
1409
           increased exactly one time too often.  */
1410
        samples -= st;
1411
        break;
1412
    }
1413

    
1414
    default:
1415
        return -1;
1416
    }
1417
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1418
    return src - buf;
1419
}
1420

    
1421

    
1422

    
1423
#ifdef CONFIG_ENCODERS
1424
#define ADPCM_ENCODER(id,name)                  \
1425
AVCodec name ## _encoder = {                    \
1426
    #name,                                      \
1427
    CODEC_TYPE_AUDIO,                           \
1428
    id,                                         \
1429
    sizeof(ADPCMContext),                       \
1430
    adpcm_encode_init,                          \
1431
    adpcm_encode_frame,                         \
1432
    adpcm_encode_close,                         \
1433
    NULL,                                       \
1434
};
1435
#else
1436
#define ADPCM_ENCODER(id,name)
1437
#endif
1438

    
1439
#ifdef CONFIG_DECODERS
1440
#define ADPCM_DECODER(id,name)                  \
1441
AVCodec name ## _decoder = {                    \
1442
    #name,                                      \
1443
    CODEC_TYPE_AUDIO,                           \
1444
    id,                                         \
1445
    sizeof(ADPCMContext),                       \
1446
    adpcm_decode_init,                          \
1447
    NULL,                                       \
1448
    NULL,                                       \
1449
    adpcm_decode_frame,                         \
1450
};
1451
#else
1452
#define ADPCM_DECODER(id,name)
1453
#endif
1454

    
1455
#define ADPCM_CODEC(id, name)                   \
1456
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1457

    
1458
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1459
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1460
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1461
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1462
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1463
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1464
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1465
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1466
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1467
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1468
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1469
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1470
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1471
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1472
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1473
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1474
ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp);
1475

    
1476
#undef ADPCM_CODEC