napa-baselibs / monl / plugins / capprobe_measure.cpp @ 5f3adef4
History | View | Annotate | Download (8.26 KB)
1 |
/***************************************************************************
|
---|---|
2 |
* Copyright (C) 2009 by Robert Birke
|
3 |
* robert.birke@polito.it
|
4 |
*
|
5 |
* This library is free software; you can redistribute it and/or
|
6 |
* modify it under the terms of the GNU Lesser General Public
|
7 |
* License as published by the Free Software Foundation; either
|
8 |
* version 2.1 of the License, or (at your option) any later version.
|
9 |
|
10 |
* This library is distributed in the hope that it will be useful,
|
11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13 |
* Lesser General Public License for more details.
|
14 |
|
15 |
* You should have received a copy of the GNU Lesser General Public
|
16 |
* License along with this library; if not, write to the Free Software
|
17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
18 |
***************************************************************************/
|
19 |
|
20 |
#include "capprobe_measure.h" |
21 |
#include "grapes_log.h" |
22 |
#include <sys/time.h> |
23 |
#include <math.h> |
24 |
#include <string> |
25 |
|
26 |
//defualt values only! can be changed using the changeParam() function
|
27 |
#define LOWER_LAYER_OVERHEAD 8+20+18+8+12 |
28 |
#define CAPPROBE_MTU 1300 |
29 |
#define CAPPROBE_SAMPLE_WINDOW 100 |
30 |
|
31 |
bool double_sort_function (double i,double j) { return (i<j); } |
32 |
|
33 |
|
34 |
CapprobeMeasure::CapprobeMeasure(class MeasurePlugin *m, MeasurementCapabilities mc, class MeasureDispatcher *md): MonMeasure(m,mc,md) { |
35 |
pkt = NULL;
|
36 |
max_size = 0;
|
37 |
} |
38 |
|
39 |
CapprobeMeasure::~CapprobeMeasure() { |
40 |
if(pkt != NULL) |
41 |
delete[] pkt;
|
42 |
} |
43 |
|
44 |
void CapprobeMeasure::init() {
|
45 |
samples.clear(); |
46 |
samples.reserve((int) param_values[P_CAPPROBE_PKT_TH]);
|
47 |
|
48 |
if(pkt != NULL) |
49 |
delete[] pkt;
|
50 |
pkt = new char[(int) param_values[P_CAPPROBE_PAYLOAD_SIZE]]; |
51 |
|
52 |
avg_pause = param_values[P_CAPPROBE_PAYLOAD_SIZE] / param_values[P_CAPPROBE_RATE] * 8000.0;// [us] |
53 |
pair_num = 0;
|
54 |
min_delay = NAN; |
55 |
min_ipd = NAN; |
56 |
last_rx = NAN; |
57 |
last_rx_pn = NAN; |
58 |
max_ipd = NAN; |
59 |
last_size = NAN; |
60 |
} |
61 |
|
62 |
void CapprobeMeasure::stop() {
|
63 |
r_rx_list[R_CAPACITY_CAPPROBE] = r_tx_list[R_CAPACITY_CAPPROBE] = NAN; |
64 |
if(pkt != NULL) |
65 |
delete[] pkt;
|
66 |
pkt = NULL;
|
67 |
} |
68 |
|
69 |
|
70 |
int CapprobeMeasure::paramChange(MonParameterType ph, MonParameterValue p){
|
71 |
switch(ph) {
|
72 |
case P_CAPPROBE_RATE:
|
73 |
param_values[P_CAPPROBE_RATE] = p; |
74 |
avg_pause = param_values[P_CAPPROBE_PAYLOAD_SIZE] / param_values[P_CAPPROBE_RATE] * 8000.0; |
75 |
break;
|
76 |
case P_CAPPROBE_PAYLOAD_SIZE:
|
77 |
param_values[P_CAPPROBE_PAYLOAD_SIZE] = p; |
78 |
if(pkt != NULL) |
79 |
delete[] pkt;
|
80 |
pkt = new char[(int) param_values[P_CAPPROBE_PAYLOAD_SIZE]]; |
81 |
avg_pause = param_values[P_CAPPROBE_PAYLOAD_SIZE] / param_values[P_CAPPROBE_RATE] * 8000.0; |
82 |
break;
|
83 |
case P_CAPPROBE_PKT_TH:
|
84 |
param_values[P_CAPPROBE_PKT_TH] = p; |
85 |
samples.clear(); |
86 |
samples.reserve((int) param_values[P_CAPPROBE_PKT_TH]);
|
87 |
break;
|
88 |
case P_CAPPROBE_DELAY_TH:
|
89 |
param_values[P_CAPPROBE_DELAY_TH] = p; |
90 |
break;
|
91 |
case P_CAPPROBE_IPD_TH:
|
92 |
param_values[P_CAPPROBE_IPD_TH] = p; |
93 |
break;
|
94 |
case P_CAPPROBE_HEADER_SIZE:
|
95 |
param_values[P_CAPPROBE_HEADER_SIZE] = p; |
96 |
break;
|
97 |
} |
98 |
return EOK;
|
99 |
} |
100 |
|
101 |
double CapprobeMeasure::gen_pause_exp() {
|
102 |
double p = random();
|
103 |
/*turn this into a random number between 0 and 1...*/
|
104 |
double f = p / (double) INT_MAX; |
105 |
return -1 * avg_pause * log(1-f); |
106 |
} |
107 |
|
108 |
void CapprobeMeasure::Run() {
|
109 |
double pause;
|
110 |
uint32_t *pn = (uint32_t*) pkt; |
111 |
|
112 |
if(flags & REMOTE)
|
113 |
return;
|
114 |
|
115 |
*pn = pair_num++; |
116 |
sendOobData(pkt, CAPPROBE_MTU); |
117 |
sendOobData(pkt, CAPPROBE_MTU); |
118 |
|
119 |
struct timeval next;
|
120 |
|
121 |
pause = gen_pause_exp(); |
122 |
next.tv_sec = (unsigned long)pause / 1000000; |
123 |
next.tv_usec = (unsigned long)fmod(pause, 100000.0); |
124 |
|
125 |
scheduleNextIn(&next); |
126 |
} |
127 |
|
128 |
void CapprobeMeasure::receiveOobData(char *buf, int buf_len, result *r) { |
129 |
uint32_t *pn = (uint32_t*) pkt; |
130 |
|
131 |
if(flags & REMOTE) { //remote |
132 |
result cap; |
133 |
//look for min delay
|
134 |
if(min_delay > r[R_CORRECTED_DELAY] || isnan(min_delay))
|
135 |
min_delay = r[P_CAPPROBE_FILTER]; |
136 |
|
137 |
//take only consecutive packets
|
138 |
if(*pn == last_rx_pn) {
|
139 |
cap = computeCapacity(last_rx_delay, r[R_CORRECTED_DELAY], r[R_RECEIVE_TIME] - last_rx, r[R_SIZE], r); |
140 |
if(!isnan(cap))
|
141 |
sendOobData((char *) &cap, sizeof(cap)); |
142 |
} |
143 |
|
144 |
last_rx = r[R_RECEIVE_TIME]; |
145 |
last_rx_delay = r[R_CORRECTED_DELAY]; |
146 |
last_rx_pn = *pn; |
147 |
|
148 |
} else {
|
149 |
result *cap = (result *) pkt; |
150 |
newSample(*cap); |
151 |
} |
152 |
} |
153 |
|
154 |
result CapprobeMeasure::RxPkt(result *r,ExecutionList *el) { |
155 |
result cap = NAN; |
156 |
|
157 |
if(!(flags & REMOTE)) //local: nothing to do |
158 |
return NAN;
|
159 |
|
160 |
//look for min delay
|
161 |
if(min_delay > r[R_CORRECTED_DELAY] || isnan(min_delay))
|
162 |
min_delay = r[P_CAPPROBE_FILTER]; |
163 |
|
164 |
//take only consecutive packets
|
165 |
if(r[R_DATA_ID] == last_rx_pn)
|
166 |
// && next_offset == r[R_DATA_OFFSET]) TODO: should also check in order
|
167 |
cap = computeCapacity(last_rx_delay, r[R_CORRECTED_DELAY], r[R_RECEIVE_TIME] - last_rx, last_size, r); |
168 |
|
169 |
last_rx = r[R_RECEIVE_TIME]; |
170 |
last_rx_delay = r[R_CORRECTED_DELAY]; |
171 |
last_rx_pn = r[R_DATA_ID]; |
172 |
last_size = r[R_SIZE]; |
173 |
|
174 |
return cap;
|
175 |
} |
176 |
|
177 |
|
178 |
result CapprobeMeasure::computeCapacity(result delay1, result delay2, result ipg, result size, result *r) { |
179 |
|
180 |
//filter on min_delay
|
181 |
if((delay1 < min_delay + param_values[P_CAPPROBE_DELAY_TH] / 1000000.0 && |
182 |
delay2 < min_delay + param_values[P_CAPPROBE_DELAY_TH] / 1000000.0) || |
183 |
param_values[P_CAPPROBE_DELAY_TH] < 0)
|
184 |
{ |
185 |
if(!isnan(ipg)) {
|
186 |
samples.push_back(ipg); |
187 |
if(ipg < min_ipd || isnan(min_ipd))
|
188 |
min_ipd = ipg; |
189 |
if(ipg > max_ipd || isnan(max_ipd))
|
190 |
max_ipd = ipg; |
191 |
} |
192 |
} |
193 |
|
194 |
if(samples.size() >= param_values[P_CAPPROBE_PKT_TH]) {// when collected enough data try to make an estimate |
195 |
int j,i,c, max_c, i_max;
|
196 |
result threshold, interval; |
197 |
|
198 |
if(max_size < size || isnan(max_size))
|
199 |
max_size = size; |
200 |
|
201 |
std::sort(samples.begin(), samples.end(), double_sort_function); |
202 |
|
203 |
switch((int) param_values[P_CAPPROBE_FILTER]) { |
204 |
case 0: //pdf based |
205 |
c = 0; max_c = -1; i_max = 0; |
206 |
interval = (max_ipd - min_ipd) / param_values[P_CAPPROBE_NUM_INTERVALS]; |
207 |
threshold = min_ipd + interval; |
208 |
for(i = 0; i < samples.size(); i++) { |
209 |
if(samples[i] >= threshold) {
|
210 |
if(c > max_c) {
|
211 |
max_c = c; |
212 |
i_max = i - c; |
213 |
} |
214 |
while(samples[i] >= threshold)
|
215 |
threshold += interval; |
216 |
c = 1;
|
217 |
} else
|
218 |
c++; |
219 |
} |
220 |
j = (i_max + max_c / 2);
|
221 |
break;
|
222 |
case 1: //median based |
223 |
for(j=0; j < samples.size(); j++) { |
224 |
if(samples[j] > min_ipd * (1 + param_values[P_CAPPROBE_IPD_TH] / 100.0)) |
225 |
break;
|
226 |
} |
227 |
j = (int)(samples.size() * 0.1) / 2; |
228 |
break;
|
229 |
} |
230 |
|
231 |
r_rx_list[R_CAPACITY_CAPPROBE] = r_tx_list[R_CAPACITY_CAPPROBE] = (max_size + param_values[P_CAPPROBE_HEADER_SIZE]) * 8.0 / samples[j]; |
232 |
|
233 |
char dbg[512]; |
234 |
snprintf(dbg, sizeof(dbg), "Ts: %f Size: %f Cap: %f", r[R_SEND_TIME], max_size, r_rx_list[R_CAPACITY_CAPPROBE]); |
235 |
debugOutput(dbg); |
236 |
for(j=0; j < samples.size(); j++) { |
237 |
snprintf(dbg, sizeof(dbg), "Ipg: %f", samples[j]); |
238 |
debugOutput(dbg); |
239 |
} |
240 |
|
241 |
samples.clear(); |
242 |
min_delay = NAN; |
243 |
min_ipd = NAN; |
244 |
max_ipd = NAN; |
245 |
max_size = NAN; |
246 |
return r_rx_list[R_CAPACITY_CAPPROBE];
|
247 |
} |
248 |
return NAN;
|
249 |
} |
250 |
|
251 |
CapprobeMeasurePlugin::CapprobeMeasurePlugin() { |
252 |
/* Initialise properties: MANDATORY! */
|
253 |
name = "Capacity (capprobe)";
|
254 |
desc = "The capacity in kbit/s computed using capprobe";
|
255 |
id = CAPACITY_CAPPROBE; |
256 |
/* end of mandatory properties */
|
257 |
addParameter(new MinParameter("Rate","The rate at which we probe the path in kbit/s",0,100), P_CAPPROBE_RATE); |
258 |
addParameter(new MinParameter("Packet Threshold","The minimum number of packets to process before considering the value somehow attendible [#]",0,CAPPROBE_SAMPLE_WINDOW), P_CAPPROBE_PKT_TH); |
259 |
addParameter(new MinParameter("Delay Threshold","The tolerance which is added to the minimum delay [us]",-1,100), P_CAPPROBE_DELAY_TH); |
260 |
addParameter(new MinParameter("Inter-pair delay threshold","The tolerance to the inter-pair delay [%]",0,60), P_CAPPROBE_IPD_TH); |
261 |
addParameter(new MinParameter("Header size","The size of the lower layer headers [bytes]",0, LOWER_LAYER_OVERHEAD), P_CAPPROBE_HEADER_SIZE); |
262 |
addParameter(new MinParameter("Payload","The size of the payload for injected packets [bytes]",sizeof(uint32_t), CAPPROBE_MTU), P_CAPPROBE_PAYLOAD_SIZE); |
263 |
addParameter(new MinMaxParameter("Filter","The filter algorithm used: 0 - PDF 1 - Median",0,1,0), P_CAPPROBE_FILTER); |
264 |
addParameter(new MinParameter("Intervals","The number of intervals for the PDF [#]",0, 1000), P_CAPPROBE_NUM_INTERVALS); |
265 |
//TODO addDependency(CORRECTED_DELAY);
|
266 |
} |