## Revision b56a7ca2 latex/note_w11.tex

View differences:

latex/note_w11.tex
5 5
%%%%%%%%%%%%%%%%%%

6 6
\section{Week 11}

7 7
\subsection{ipkg = Itsy Package Management System}

8
    ipkg, or the Itsy Package Management System, is a lightweight package management system designed for embedded devices that resembles Debian's dpkg.

9

10
    opkg is the fork of ipkg

11

12
    http://lists.openmoko.org/pipermail/devel/2008-July/000496.html

13

14
\subsection{Shortest Path Problems}

15

16
    Single-source Shortest-Paths

17
    \begin{itemize}

18
        \item Dijkstra

19
            \begin{itemize}

20
                \item priority queue: $O(|V|^2)$

21
                \item binary heap: $O(|E| log|V|)$

22
                \item fibonacci heap: $O(|V| log|V| + |E|)$

23
            \end{itemize}

24
        \item Bellman-Ford: $O(|V|\times|E|)$, worst case: $O(|V|^3)$

25
    \end{itemize}

26

27
    Algorithms for the All-Pairs Problem

28
    \begin{itemize}

29
        \item Iteration $O(|V|^4)$

30
        \item Iteration with Doubling Up $O(|V|^3 \times log|V|$

31
        \item Floyd-Warshall Algorithm: $O(|V|^3)$

32
    \end{itemize}

33

34
\subsection{Matrix}

35
    \textbf{Multiplication} of $n \times n$-matrices

36

37
    $A \otimes B = (c_{ij})$ where $c_{ij} = \oplus_{k=1}^{n} a_{ik} \otimes b_{kj}$

38

39
    $k$-th \textbf{power} of matrix A:

40

41
    $A^k = (d_{ij}$ where $d_{ij} = \oplus_{r = 0}^{k - 1} a_{ir} \otimes a_{rj}, A^0 = I$

42

43
    \textbf{XXX} I have the feeling that the definition from the \href{https://www.iam.unibe.ch/~run/talks/2008-06-05-Bern-Jonczy.pdf}{slide} is wrong. Wolfram gave a different definition \href{http://mathworld.wolfram.com/MatrixPower.html}{here}

44

45
    The \textbf{closure} of the matrix A: $A^{*} = \oplus_{k >= 0} A^k$

46

47
    \subsubsection{Other materials}

48
        Check out slide for ICS 6D in \texttt{reading/w11 - MatrixMultiplication}. It details how the matrix multiplication works

49

50
\subsection{Algebraic Path Problem (APP)}

51
    https://www.iam.unibe.ch/~run/talks/2008-06-05-Bern-Jonczy.pdf

52

53
    The Algebraic Path Problem consists in performing a special unary operation, called the closure , over a square matrix with entries in a semiring [Fink, 1992]

54

55

56
    For example, Problem of computing the length of the shortest path (for all pairs): APP over graph \texttt{G} and tropical semiring \texttt{Trop}.

57

58
    \textbf{XXX But I don't really understand...}


Also available in: Unified diff